Reading for Today: 14.1-14.5 in $5^{\text {th }}$ ed and 13.1-13.5 in $4^{\text {th }}$ ed.
Reading for Lecture \#31: 14.6, 17.7 in $5^{\text {th }}$ ed and 13.6, 17.7 in $4^{\text {th }} \mathrm{ed}$.

Topic: Introduction to Kinetics
 I. Rates of Chemical Reactions
 II. Rate Expressions and Rate Laws

Kinetics Versus Thermodynamics

When considering a chemical reaction, one must ask whether the reaction will go forward spontaneously (thermodynamics), and \qquad the reaction will go (kinetics).

Stable/unstable refers to \qquad (\qquad tendency to decompose)

Labile/ nonlabile (inert) refers to the \qquad at which this tendency is realized

Rate is important. A chemical kinetics experiment measures the rate at which the concentration of a substance taking part in a chemical reaction changes with time.

Factors affecting rates of chemical reactions

Let's consider the oscillating clock reaction

To understand this reaction, one must consider thermodynamics, chemical equilibrium, acidbase, oxidation-reaction, kinetics, and the influence of oxidation and liganded state to color.

The overall reaction is: $\mathrm{IO}_{3}^{-}+2 \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{CH}_{2}\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2}+\mathrm{H}^{+} \rightarrow \mathrm{ICH}\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2}+2 \mathrm{O}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ Its mechanism involves multiple steps, including:
(a) $\mathrm{IO}_{3}^{-}+\mathrm{I}^{-}+2 \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{O}_{2}+3 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}$ (spontaneous when $\left[\mathrm{I}_{2}\right]$ is low)
(b) $\mathrm{I}_{2}+\mathrm{CH}_{2}\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2} \rightarrow \mathrm{ICH}\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2}+\mathrm{H}^{+}+\mathrm{I}^{-} \quad$ (spontaneous when $\left[\mathrm{I}_{2}\right]$ is high)

Reaction (a): addition of IO_{3}^{-}and I^{-}to hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ under acidic conditions, turns a clear solution to amber (I^{-}is clear and I_{2} is amber).

Reaction (b): addition of $\mathrm{I}_{2}\left(\mathrm{I}_{2}\right.$ is amber) to malonic acid $\left(\mathrm{CH}_{2}\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2}\right)$, generates a complex that is blue. Thus, the color of I depends on both oxidation and liganded state.

Let's think about the oxidation-reduction processes in Reaction (a):
I in IO_{3}^{-}is being \qquad to $\mathrm{I}_{2} ; \mathrm{I}^{-}$is being \qquad to I_{2};
O in $\mathrm{H}_{2} \mathrm{O}_{2}$ is being \qquad to $\mathrm{O}_{2} ; \mathrm{O}$ in $\mathrm{H}_{2} \mathrm{O}_{2}$ is being \qquad to $\mathrm{H}_{2} \mathrm{O}$.
With a large (+) $E^{\circ}, \mathrm{H}_{2} \mathrm{O}_{2}$ is
The reaction rate is also sensitive to temperature.

I. Rates of Chemical Reactions

Measuring average reaction rates
Consider: $\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{NO}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g})$

time (sec)

Can monitor the changes in concentration of NO average rate $=\quad \frac{\text { change in concentration }}{\text { change in time }}$ average rate $=$ average rate $=\frac{0.0288-0.0160 \mathrm{M}}{150 .-50 . \sec }=$
average rate depends on time interval chosen

Measuring instantaneous reaction rates
Consider: $\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{NO}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g})$

Rate expressions
Consider again: $\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{NO}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g})$
Can monitor NO or CO_{2} increase or NO_{2} or CO decrease

$$
\text { rate }=\frac{-\mathrm{d}\left[\mathrm{NO}_{2}\right]}{\mathrm{dt}} \quad=\quad \frac{-\mathrm{d}[\mathrm{CO}]}{\mathrm{dt}} \quad=\quad=
$$

Assuming no intermediate species and/or that the concentration of intermediates is independent of time

```
Generally \(\quad \mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{cC}+\mathrm{dD}\)
```


Example $\quad 2 \mathrm{HI}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$
rate $=\quad=$

II. Rate Laws

The rate law is the relationship between the rate and the concentration, which are related by a proportionality constant, \qquad ,called the \qquad .
$\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{cC}+\mathrm{dD}$
rate $=k[A]^{\mathrm{m}}[B]^{\mathrm{n}} . . .$.
m and n are order of reaction in A and B, respectively
k is the rate constant

Truths about rate laws
(1) Rate law is a result of experimental observation. You CANNOT look at the stoichiometry of the reaction and predict the rate law (unless the reaction is an elementary reaction - we will come back to this later).
(2) The rate law is not limited to reactants. It can have a product terms, i.e., rate $=k[A]^{m}[B]^{n}[C]^{c}$
(3) For rate $=k[A]^{m}[B]^{n}, m$ is the order of reaction in A, n is the order of reaction in B. m and n can be integers, fractions, negative or positive.
$\mathrm{m}=0$
Double concentration/
$\mathrm{m}=1 / 2$
Double concentration/
$m=1 \quad$ First order $\quad \mathrm{A}[\mathrm{A}] \quad$ Double concentration/
$\mathrm{m}=2 \quad$ Second order $\mathrm{k}[\mathrm{A}]^{2} \quad$ Double concentration/
Triple concentration/
$m=-1$
Double concentration/
$m=-1 / 2$
Double concentration/
(4) The overall reaction order is the sum of the exponents in the rate law.

For rate $=k[A]^{2}[B]$, the overall reaction order is \qquad order.
\qquad order in A and \qquad order in B
(5) The units for k vary. Determine units for k by considering units for rate and for concentration.

Integrated Rate Laws
Measuring initial rates can be difficult because it involves determining \qquad changes in concentrations that occur during short intervals in time.

An alternative is to use the integrated rate law, which expresses concentrations directly as a function of time.

Integrated first-order rate law
First Order $\mathrm{A} \rightarrow \mathrm{B}$
rate $=\underline{-d[A]}=\mathrm{k}[\mathrm{A}]$
dt
separate concentration and time terms
$\frac{1}{[\mathrm{~A}]} \cdot \mathrm{d}[\mathrm{A}]=-\mathrm{kdt}$
$\int_{[\mathrm{A}]_{0}}^{[\mathrm{A}]_{\mathrm{t}}} \frac{1}{[\mathrm{~A}]} \mathrm{d}[\mathrm{A}]=-\mathrm{k} \int_{\mathrm{o}}^{\mathrm{t}} \mathrm{dt}$
$\ln [\mathrm{A}]_{\mathrm{t}}-\ln [\mathrm{A}]_{0}=-\mathrm{kt} \quad$ or $\quad \ln [\mathrm{A}]_{\mathrm{t}}=-\mathrm{kt}+\ln [\mathrm{A}]_{0} \quad$ Equation for straight line
$\ln \frac{[\mathrm{A}]_{t}}{[\mathrm{~A}]_{0}}=-\mathrm{kt}$

$$
\frac{[\mathrm{A}]_{\mathrm{t}}}{[\mathrm{~A}]_{0}}=\mathrm{e}^{-\mathrm{kt}}
$$

$[\mathrm{A}]_{\mathrm{t}}=[\mathrm{A}]_{0} \mathrm{e}^{-\mathrm{kt}}$

Integrated $1^{\text {st }}$ order rate law

Let's plot $\ln \left[\mathrm{A}_{\mathrm{t}}\right]$ versus time

Rate constants can be determined from experiment by plotting data in this manner.

First-order Half-life

Half-life is the time it takes for the original concentration to be reduced by half (\qquad).

From above $\ln \frac{[\mathrm{A}]_{\mathrm{t}}}{[\mathrm{A}]_{0}}=-\mathrm{kt}$

$$
\frac{\ln \left(\frac{[\mathrm{A}]_{0}}{2}\right)}{[\mathrm{A}]_{0}}=-\mathrm{kt}_{1 / 2}
$$

First order half life depend on concentration.

Half life depends on k, and k depends on the material in question.

$$
\ln 1 / 2=-\mathrm{kt}_{1 / 2}
$$

For the same material does it take longer to go from 1 ton to a $1 / 2$ ton or 1 gram to a $1 / 2$

$$
-0.6931=-\mathrm{kt}_{1 / 2}
$$ gram?

$$
\mathrm{t}_{1 / 2}=\frac{0.6931}{\mathrm{k}}
$$

Equation Sheet Exam 4

$\mathrm{c}=2.9979 \times 10^{8} \mathrm{~m} / \mathrm{s}$	$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
$\mathrm{h}=6.6261 \times 10^{-34} \mathrm{~J} \mathrm{~s}$	$\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \ln \mathrm{Q}$
$\mathrm{N}_{\mathrm{A}}=6.02214 \times 10^{23} \mathrm{~mol}^{-1}$	$\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln \mathrm{K}$
$\mathrm{R}=8.314 \mathrm{~J} /(\mathrm{K} \mathrm{mol})$	$\Delta \mathrm{G}=\mathrm{RT} \ln \mathrm{Q} / \mathrm{K}$
$1 \mathrm{eV}=1.60218 \times 10^{-19} \mathrm{~J}$	$\ln \left(\mathrm{K}_{2} / \mathrm{K}_{1}\right)=-\left(\Delta \mathrm{H}^{\circ} / \mathrm{R}\right)\left(1 / \mathrm{T}_{2}-1 / \mathrm{T}_{1}\right)$
$\mathrm{K}_{\mathrm{w}}=1.00 \times 10^{-14}$ at $25.0^{\circ} \mathrm{C}$	
$14.00=\mathrm{pH}+\mathrm{pOH}$ at $25.0^{\circ} \mathrm{C}$	$\mathrm{pH} \approx \mathrm{pK}_{\mathrm{a}}-\log (\mathrm{HA} / \mathrm{A})$
\mathfrak{J} (Faraday's constant) $=96,485 \mathrm{C} \mathrm{mol}^{-1}$	$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \quad \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
Electromagnetic Spectrum:	$\mathrm{K}_{\mathrm{w}}=\mathrm{K}_{\mathrm{a}} \mathrm{K}_{\mathrm{b}} \quad \mathrm{pK}=-\log \mathrm{K}$
Violet $\sim 400-430 \mathrm{~nm}$ Blue $\sim 431-490 \mathrm{~nm}$	$\mathrm{Q}=\mathrm{It}$
Green $\sim 491-560 \mathrm{~nm}$	
Yellow $\sim 561-580 \mathrm{~nm}$ Orange $\sim 581-620 \mathrm{~nm}$	$\Delta \mathrm{G}^{\circ}{ }_{\text {cell }}=-(\mathrm{n})(\mathfrak{F}) \Delta E^{\circ}{ }_{\text {cell }}$
Red $\sim 621-700 \mathrm{~nm}$	$\Delta E^{\circ}($ cell $)=E^{\circ}($ cathode $)-E^{\circ}($ anode $)$
Complementary Colors: red/green, blue/orange, yellow/violet	$\Delta E^{\circ}=E^{\circ}(\text { reduction })-E^{\circ}(\text { oxidation })$
$\begin{aligned} & \mathrm{I}^{-}<\mathrm{Br}^{-}<\mathrm{Cl}^{-} \quad \text { (weak field ligands) } \\ & <\mathrm{F}^{-}<\mathrm{OH}^{-}<\mathrm{H}_{2} \mathrm{O} \text { (intermediate) } \end{aligned}$	$\Delta E_{\text {cell }}=E^{\circ}{ }_{\text {cell }}-(\mathrm{RT} / \mathrm{n} \Im) \ln \mathrm{Q}$
$<\mathrm{NH}_{3}<\mathrm{CO}<\mathrm{CN}^{-9}$ (strong field ligands)	$\mathrm{RT} / \mathfrak{\Im}=0.025693 \mathrm{~V}$ at $25.0{ }^{\circ} \mathrm{C}$
1 Coulomb \cdot Volt $=1$ Joule	$\mathfrak{J} / \mathrm{RT}=38.921 \mathrm{~V}^{-1}$ at $25.0{ }^{\circ} \mathrm{C}$
$\begin{array}{ll} 1 \mathrm{~Bq}=1 \text { nuclei } / \mathrm{sec} & \\ 1 \mathrm{~A}=1 \mathrm{C} / \mathrm{s} & 1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s} \end{array}$	$\Delta E_{\text {cell }}=E_{\text {cell }}^{\circ}-[(0.025693 \mathrm{~V})(\ln \mathrm{Q}) / \mathrm{n}] \text { at } 25.0^{\circ} \mathrm{C}$
$\ln =2.3025851 \mathrm{log}$	$\Delta E_{\text {cell }}=E^{\circ}$ cell $-[(0.0592 \mathrm{~V})(\log \mathrm{Q}) / \mathrm{n}]$ at $25.0^{\circ} \mathrm{C}$
$1 \mathrm{~J}=1 \mathrm{kgm}^{2} \mathrm{~s}^{-2}$	$\ln \mathrm{K}=(\mathrm{n} \Im / \mathrm{RT}) \Delta E^{\circ}$
$\mathrm{x}=\left[-\mathrm{b} \pm\left(\mathrm{b}^{2}-4 \mathrm{ac}\right)^{1 / 2}\right] / 2 \mathrm{a}$	$\mathrm{A}=\mathrm{A}_{\mathrm{o}} \mathrm{e}^{-\mathrm{kt}}$
	$\mathrm{N}=\mathrm{N}_{\mathrm{o}} \mathrm{e}^{-\mathrm{kt}}$
$\mathrm{E}=\mathrm{h} \nu=\mathrm{hc} / \lambda$	$\mathrm{A}=\mathrm{kN}$
$\mathrm{c}=\nu \lambda$	$[\mathrm{A}]=[\mathrm{A}]_{\mathrm{o}} \mathrm{e}^{-\mathrm{kt}} \quad \mathrm{t}_{1 / 2}=\ln 2 / \mathrm{k}$
	$1 /[\mathrm{A}]=1 /[\mathrm{A}]_{\mathrm{o}}+\mathrm{kt} \quad \mathrm{t}_{1 / 2}=1 / \mathrm{k}[\mathrm{A}]_{\mathrm{o}}$

MIT OpenCourseWare
https://ocw.mit.edu

5.111 Principles of Chemical Science

Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

