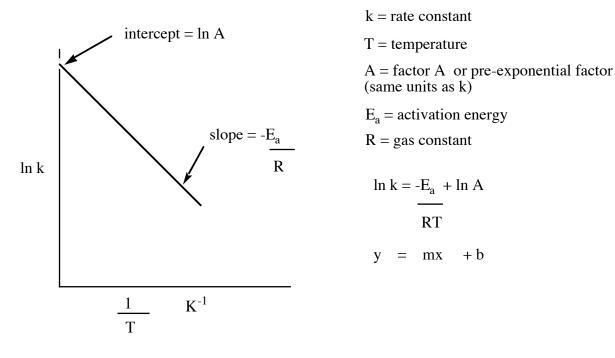
Reading for Today: 14.11-14.13 in 5th ed and 13.11-13.13 in 4th ed **Reading for Lecture #34**: 14.14 & 14.16 in 5th ed and 13.14 & 13.16 in 4th ed


Topic: Kinetics	
I. Effect of Temperature on Reactions Rates	
II. The Reaction Coordinate and the Activation Complex	

I. Effect of Temperature on Reaction Rates

Gas-Phase

A qualitative observation is that reaction rates tend to ______ with increased temperature. Now we will consider the quantitative effect.

In 1889, Svante Arrhenius plotted ln k versus inverse temperature and got a straight line.

Rate constants vary ______ with inverse temperature A and E_a depend on the reaction being studied.

Is factor A temperature dependent?

Is E_a temperature dependent?

Example: Using the activation energy to predict a rate constant

The hydrolysis of sucrose to form a molecule of glucose and a molecule of fructose is part of the digestive process.

 $\begin{array}{l} E_{a}=108 \text{ kJ/mol} \\ k_{obs}=1.0 \text{ x } 10^{-3} \text{ M}^{-1} \text{s}^{-1} \text{ at } 37^{\circ} \text{C} \text{ (normal body temperature)} \end{array}$

Calculate k_{obs} at 35°C.

$$\ln k_1 = \ln A - \frac{E_a}{RT_1} \qquad \qquad \ln k_2 = \ln A - \frac{E_a}{RT_2}$$

$$\ln k_2 - \ln k_1 = -\ln\left(\frac{k_2}{k_1}\right) = \frac{-E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

$$\ln \left(\frac{k_2}{1.0 \text{ x } 10^{-3} \text{ M}^{-1} \text{ s}^{-1}}\right) = \frac{-108 \text{ x } 10^3 \text{ J mol}^{-1}}{8.315 \text{ JK}^{-1} \text{ mol}^{-1}} \left(\frac{1}{308 \text{ K}} - \frac{1}{310 \text{ K}}\right)$$

$$k_2 = 7.6 \text{ x } 10^{-4} \text{ M}^{-1} \text{ s}^{-1}$$

Equation to relate change in T to change in k

$$\ln\left(\frac{k_2}{k_1}\right) = \frac{-E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right) \xrightarrow{A \text{ large activation energy means that the rate constant is}}_{\text{sensitive to changes in temperature.}}$$

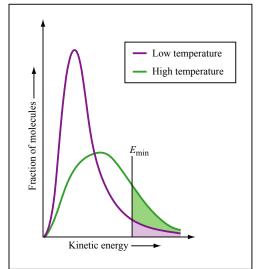
What do you think happens to the rate of an enzymatic reaction at liquid N_2 temperatures? What about the rate of a non-enzymatic reaction at liquid N_2 temperatures?

II. The Reaction Coordinate and the Activation Complex

Consider $CH_3(g) + CH_3(g) \rightarrow C_2H_6(g)$

2 molecules collide to form product (bimolecular) but every two molecules that collide won't form product. Why?

Only those collisions for which the collision energy exceeds some critical energy (E_{min}) (also known as ______ energy, E_a) result in a reaction.

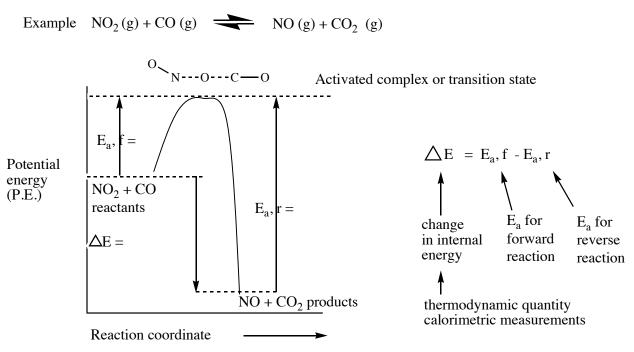

Why is there a critical collision energy, E_{min} or $E_{a'}$ for the reaction between two molecules?

As two reactant molecules approach each other along a reaction path, their potential

energy______ as the bonds within them distort.

Only molecules with sufficient energy can overcome the activation energy barrier.

This is where temperature becomes important.



At low temperatures, only a small fraction of molecules will have sufficient energy.

At higher temperatures, a larger fraction will have sufficient energy.

Figure by MIT OpenCourseWare.

Reaction Coordination Diagrams

Recall
$$\Delta H = \Delta E + \Delta (PV)$$

For gases, these quantities differ by 1-2% and for liquids and solids, there is a negligible difference.

<u>For elementary reactions</u>, the activation energy barrier is always positive (some barrier to overcome).

Therefore, increasing the temperature ______ the rate of an elementary reaction.

For overall reactions, increasing temperature can decrease or increase the overall rate.

<u>Example</u> 2NO + $O_2 \rightarrow 2NO_2$ with proposed mechanism:

1st step (Fast, reversible) NO + NO $\stackrel{k_1}{\underset{k_1}{\longrightarrow}}$ N₂O₂ k_2 2nd step slow N₂O₂ + O₂ \rightarrow 2NO₂

rate of product formation = $2k_2 [N_2O_2] [O_2]$ \uparrow intermediate Since first step is fast and reversible and the second step is slow, we can solve for $[N_2O_2]$ by setting up an equilibrium expression:

$$K_{1} = [N_{2}O_{2}] =$$
Substituting:
rate of product formation = $2k_{2} [N_{2}O_{2}] [O_{2}] =$

$$rate = 2k_{2}K_{1} [NO]^{2} [O_{2}]$$

$$elementary$$
rate constant
rate increases
with temperature
effect of temperature on an
equilibrium constant depends
on whether the reaction is
endothermic or exothermic
$$ln\left[\frac{k_{Temp2}}{k_{Temp1}}\right] = \frac{-E_{a}}{R} \left[\frac{1}{T_{2}} - \frac{1}{T_{1}}\right] \qquad ln\left[\frac{K_{Temp2}}{K_{Temp1}}\right] = \frac{-\Delta H^{\circ}}{R} \left[\frac{1}{T_{2}}\right]$$

Here the reaction is exothermic, so increasing temperature ______ the equilibrium constant

 $k_{obs} = 2k_2K_1$ with increased temperature, k increases (elementary rate constants always increase with T) K ______(for exothermic reaction)

Magnitude of change depends on E_a (for rate constant) and ΔH (for equilibrium constant).

For 2NO + $O_2 \implies 2 NO_2$, E_a is a small number and ΔH is a big number

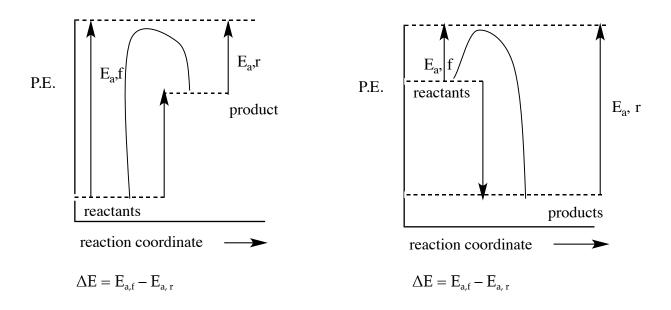
- Since E_a is a small positive, the rate constant increases only a little
- Since ΔH is a big negative, the equilibrium constant decreases a lot with temperature

Thus, increasing the temperature actually **decreases** k_{obs}.

A large E_a means that k is very sensitive to changes in temperature.

A large ΔH means that K is very sensitive to changes in temperature.

 $-\frac{1}{T_1}$


Rate constants always increase with temperature, since E_a is always ______.

Equilibrium constants can increase or decrease with temperature, since ΔH can be (-) or (+).

The magnitude of ΔH indicates the **magnitude** of the change, and the sign of ΔH indicates the ______ of the change.

Le Chatelier's Principle - when a stress is applied to a system in equilibrium, the equilibrium tends to adjust to ______ the effect of the stress.

Increasing the temperature, shifts the reaction in the ______ direction.

Inc T, easier to overcome $E_{a,f}$
Equilibrium shifts toward products

Inc T, easier to overcome E_{a,r} Equilibrium shifts toward reactants

Most molecules have enough energy to overcome small barriers: increasing temperature allows more molecules to overcome larger barriers

Recall, a large E_a means that the rate constant is very sensitive to changes in temperature.

Big E_a - increasing the temperature makes a ______ difference

Small E_a - increasing the temperature does not make much of a difference.

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.