A. Bond Lengths: mostly dependent on atomic size, bond order, and hybridization

Bond Lengths (\AA)					
$s p^{3}-s p^{3}$	$\mathrm{C}-\mathrm{C}$	1.54	$s p^{3}-s p^{3}$	$\mathrm{C}-\mathrm{O}$	1.42
$s p^{2}-s p^{2}$	$\mathrm{C}=\mathrm{C}$	1.34	$s p^{2}-s p^{2}$	$\mathrm{C}=\mathrm{O}$	1.22
$s p-s p$	$\mathrm{C} \equiv \mathrm{C}$	1.20			

- Multiple Bonding: Bond length depends strongly on bond order (length: single > double > triple)

Bond Lengths (Å)

| $s p^{3}$ | $C-H$ | 1.09 | | $s p^{3}-s p^{3}$ | $C-C$ |
| :--- | :--- | :--- | :--- | :--- | :--- | $\boldsymbol{1}^{2} .54$

- Effect of hybridization on length of single bonds: $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{C}$ bonds shorten slightly with increased s character on carbon
B. Bond Strengths/Bond Dissociation Energies (BDEs): Energy for homolytic bond cleavage to uncharged radical fragments

> - Bond strengths are bond energies for a certain bond averaged over many different molecules.

- Bond dissociation energies are for a particular molecule and are dependent on the specific molecular structure (Bond Strength $\pm 20 \mathrm{kcal} / \mathrm{mol}$)
- Multiple Bonding: Bond strength depends strongly on bond order (strength: single < double < triple)

C. Acidity of Organic Molecules

Functional Group	Acid A	Approximate $\mathrm{p} K_{\mathrm{a}}$ Values (in water)	Conjugat incr ba
alkane-sp ${ }^{3}$	$\mathrm{H}-\mathrm{CH}_{3}$	48	${ }^{-} \mathrm{CH}_{3}$
alkene-sp ${ }^{2}$	$\mathrm{H}-\mathrm{CH}=\mathrm{CH}_{2}$	244	${ }^{-} \mathrm{CH}=\mathrm{CH}_{2}$
amine	$\mathrm{H}-\mathrm{NH}_{2}$	38	$-\mathrm{NH}_{2}$
hydrogen	H-H	35	-H
alkyne-sp	$\mathrm{H}-\mathrm{C} \equiv \mathrm{CH}$	25	${ }^{-} \mathrm{C} \equiv \mathrm{CH}$
alcohol	$\mathrm{H}-\mathrm{OCR}_{3}$	17	${ }^{-} \mathrm{OCR}_{3}$
water	$\mathrm{H}-\mathrm{OH}$	15.7	${ }^{-} \mathrm{OH}$
thiol	H-SR	10-11	-SR
ammonium	H- ${ }^{+} \mathrm{NR}_{3}$	10-11	NR_{3}
nitrile (cyanide)	$\mathrm{H}-\mathrm{C} \equiv \mathrm{N}$	9.2	${ }^{-} \mathrm{C} \equiv \mathrm{N}$
phenol	$\mathrm{H}-\mathrm{OAr}$	8-11	- OAr
carboxylic acid	$\mathrm{H}-\mathrm{OC}(\mathrm{O}) \mathrm{R}$	4-5	-OC(O)R
	H-F	3.17	-F
hydronium	H- ${ }^{+} \mathrm{OH}_{2}$	-1.74	OH_{2}
	$\mathrm{H}-\mathrm{Cl}$	-7	${ }^{-} \mathrm{Cl}$
	H-I	-10	-
increasing acidity			

- Acidity increases across a row: $\mathrm{H}-\mathrm{C}<\mathrm{H}-\mathrm{N}<\mathrm{H}-\mathrm{O}<\mathrm{H}-\mathrm{F}$ (electronegativity)
- Acidity increases down a period: $\mathrm{H}-\mathrm{F}<\mathrm{H}-\mathrm{Cl}<\mathrm{H}-\mathrm{Br}<\mathrm{H}-\mathrm{I}$ (size)
- Neutral species less acidic than corresponding positively charged species: $\mathrm{H}-\mathrm{OH}<\mathrm{H}^{+} \mathrm{OH}_{2}$
$\mathrm{p} K_{\mathrm{a}}$ data from: Advanced Organic Chemisry, 4th Ed., J. March

