

	S _N 2	S _N 1
Mechanism:	Concerted	Two Steps (Look for carbocation rearrangements,
Rate Equation:	Rate = k _r [R-X][Nuc]	Rate = k _r [R-X]
Stereochemistry:	Stereospecific (inversion)	Loss of Stereochemistry
Substrate:	Sterics (methyl > 1° > 2°) No S _N 2 with 3°! Orbital Overlap (methyl benzylic > allylic > 1°)	Cation Stability (benzylic > allylic > 3° > 2°) No 1° or methyl R ⁺ without extra stabilization!
Nucleophile:	Strong/Moderate Required strong: RS [−] , I [−] , R ₂ N [−] , R ₂ NH, RO [−] , CN [−] moderate: RSH, Br [−] , RCO ₂ [−]	Not Important
Leaving Group:	Moderately Important (same trend as S _N 1)	Very Important (-OTf >> -OTs -OMs >> -I > -Br > -Cl)
Solvent:	Polar Aprotic	Polar Protic

Elimination Reactions: E2 versus E1		
	E2	E1
Mechanism:	Concerted	Two Steps (Look for carbocation rearrangements.)
Rate Equation:	Rate = k _r [R-X][Base]	Rate = k _r [R-X]
Stereochemistry:	Stereospecific (antiperiplanar TS)	Not Stereospecific
Substrate:	Alkene Stability (3° > 2° > 1°)	Cation Stability (benzylic > allylic > 3° > 2°)
Base:	Strong Base Required (RO ⁻ , R_2N^-)	Not Important: Usually Weak (ROH, R ₂ NH)
Leaving Group:	Moderately Important (same trend as S _N 1)	Very Important (same trend as S _N 1)
Solvent:	Wide Range of Solvents	Polar Protic
Product Ratio:	Saytzeff Rule: The most highly substituted alkene usually predominates. Hofmann Product: Use of a sterically hindered base will result in formation of the least substituted alkene (Hofmann product).	

