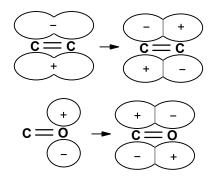
- Using light absorption to change charge distribution of electrons about molecule
- This is a lot of energy often can break bonds.

Types of electronic transitions:

Organics: Involving π , σ , n electrons


Saturated compounds

visible (200-700 nm)

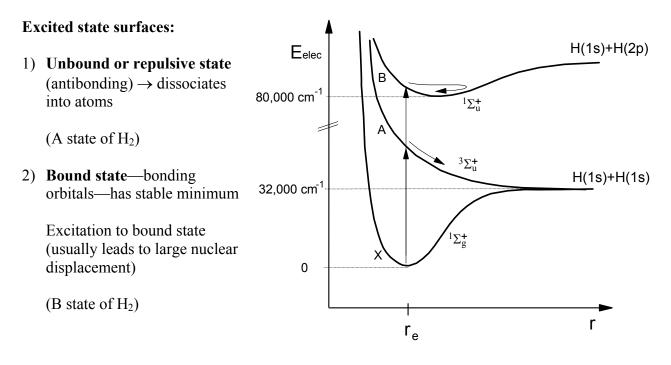
 $\sigma \rightarrow \sigma^{*}~({<}150~\text{nm}),~n \rightarrow \sigma^{*}~({<}250~\text{nm})\text{:}$ deep UV

Double bonds/unsaturated systems—less energy to π^*

 $\pi \rightarrow \pi^*$, $n \rightarrow \pi^*$ transitions : UV and

Inorganics: Additionally, transitions between d orbitals split by presence of ligand field. Usually in visible.

d-d transition


Charge transfer transition: Electron moves between ligand and metal. One must act as donor and other as acceptor

 MnO_4^-

Electronic Spectra (We will work with examples from diatomics)

- At equilibrium, molecule is in ground electronic state → lowest energy electronic state and typically in v=0.
- Transitions to higher lying electronic states are accompanied by changes in v, J.
- Excitation is accompanied by vibrational excitation, feels restoring force in excited state.

Quantitative information is in the shape of potential energy curves.

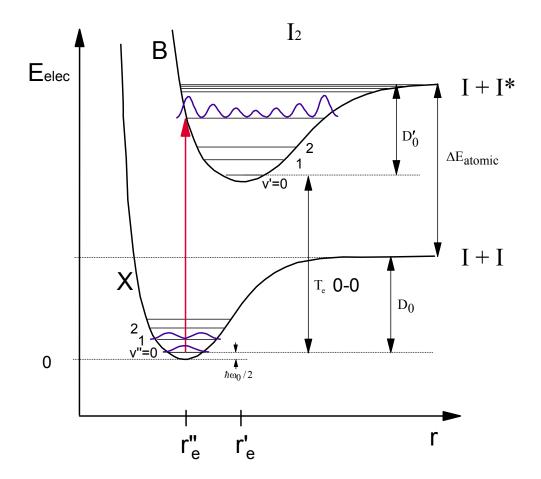
(For diatomics: ground state = X; excited states = A, B, C . . .)

Franck-Condon principle (vertical transitions):

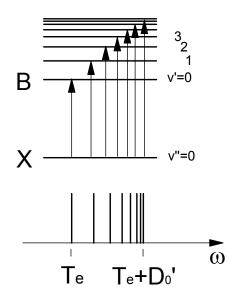
- Electrons respond much faster than nuclear motion, therefore an excitation proceeds without a change to the nuclear geometry.
- Light will be resonant with electronic energy gap at equilibrium nuclear geometry.

Selection Rules — Even for diatomics, this gets complicated.

- Conservation of nuclear/spin/total angular momentum makes it tough to predict precisely for larger molecules.
- Again absorption requires $\frac{\partial \mu}{\partial q} \neq 0 \longrightarrow$ change of parity: $u \leftrightarrow g$.


• For transitions between initial and final vibrational states, the probability of excitation is given by the Franck-Condon overlap integral

$$\mathbf{P}_{i \to f} = \left| \int \psi^*_{\text{final}} \hat{\mu} \psi_{\text{initia}} \, d\mathbf{R} \right|^2 \qquad \qquad \psi^*_{\text{final}} = \psi^*_{e'} \psi^*_{v'} \cdots \qquad \psi_{\text{initial}} = \psi_{e''} \psi_{v''} \cdots$$

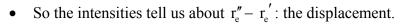

R specifies the electronic and nuclear coordinates.

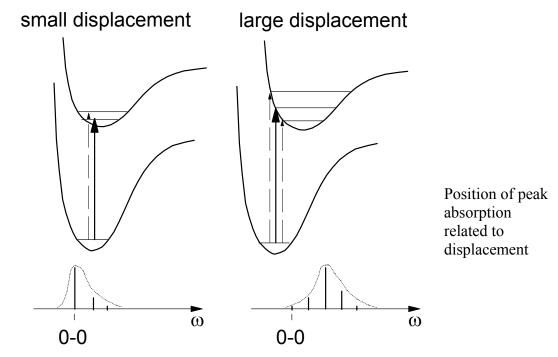
If $\hat{\mu}$ doesn't depend much on nuclear geometry, then

$$P_{i \to f} \propto \left| \int \psi_{v'}^{*}(r) \psi_{v'}(r) dr \right|^{2}$$
 Franck-Condon Factor

- Excited state is anharmonic. Vibrational spacing Δv will decrease for higher excitation.
- The electronic spectrum will be a converging series of lines:

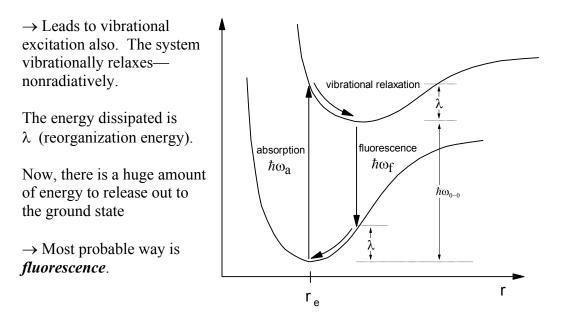
From 0-0 transition and convergence limit \rightarrow get D_0'

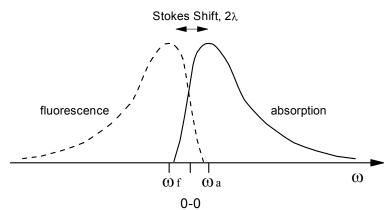

Since


$$T_e + D_0' = D_0 + \Delta E_{atomic}$$

if you know ΔE_{atomic} , you can get D_0

Intensities: Dictated by Franck-Condon factor.


• Most probably excitation is to classical turning point.


Relaxation of Electronic States

Typically when we electronically excite a molecule, there is a displacement of charge and a new equilibrium nuclear separation.

In gas phase:	vibrational relaxation (T ₁) $\sim 10^{-12} - 10^{-11}$ s	1–10ps for large molecules
	fluorescence $(T_1) \sim 1-10$ ns	
<u>In solutions</u> :	dephasing, T_2^* fast ~ 10^{-14} s $10-20$ fs fluctuations of solvent vibrational relaxation ~ $1-10$ ps fluorescence ~ $1-10$ ns	

Fluorescence is always red-shifted relative to absorption.

