Electronic Spectroscopy

- Using light absorption to change charge distribution of electrons about molecule
- This is a lot of energy - often can break bonds.

Types of electronic transitions:

Organics: Involving π, σ, n electrons

Saturated compounds

$\sigma \rightarrow \sigma^{*}(<150 \mathrm{~nm}), \mathrm{n} \rightarrow \sigma^{*}(<250 \mathrm{~nm})$: deep UV

Double bonds/unsaturated systems-

 less energy to $\pi^{*}$$\pi \rightarrow \pi^{*}, \mathrm{n} \rightarrow \pi^{*}$ transitions: UV and visible (200-700 nm)

Inorganics: Additionally, transitions between d orbitals split by presence of ligand field. Usually in visible.

d-d transition

Charge transfer transition: Electron moves between ligand and metal.
One must act as donor and other as acceptor

$$
\mathrm{MnO}_{4}^{-}
$$

Electronic Spectra (We will work with examples from diatomics)

- At equilibrium, molecule is in ground electronic state \rightarrow lowest energy electronic state and typically in $\mathrm{v}=0$.
- Transitions to higher lying electronic states are accompanied by changes in v, J.
- Excitation is accompanied by vibrational excitation, feels restoring force in excited state.

Quantitative information is in the shape of potential energy curves.

Excited state surfaces:

1) Unbound or repulsive state (antibonding) \rightarrow dissociates into atoms
(A state of H_{2})
2) Bound state-bonding orbitals-has stable minimum

Excitation to bound state (usually leads to large nuclear displacement)
(B state of H_{2})

$($ For diatomics: ground state $=\mathrm{X} ;$ excited states $=\mathrm{A}, \mathrm{B}, \mathrm{C} \ldots)$

Franck-Condon principle (vertical transitions):

- Electrons respond much faster than nuclear motion, therefore an excitation proceeds without a change to the nuclear geometry.
- Light will be resonant with electronic energy gap at equilibrium nuclear geometry.

Selection Rules - Even for diatomics, this gets complicated.

- Conservation of nuclear/spin/total angular momentum makes it tough to predict precisely for larger molecules.
- Again absorption requires $\frac{\partial \mu}{\partial q} \neq 0 \quad \rightarrow$ change of parity: $u \leftrightarrow g$.
- For transitions between initial and final vibrational states, the probability of excitation is given by the Franck-Condon overlap integral

$$
\mathrm{P}_{\mathrm{i} \rightarrow \mathrm{f}}=\left|\int \psi_{\text {final }}^{*} \hat{\mu} \psi_{\text {initia }} \mathrm{d} \mathbf{R}\right|^{2} \quad \psi_{\text {final }}^{*}=\psi_{\mathrm{e}^{\prime}}^{*} \psi_{\mathrm{v}^{\prime}}^{*} \cdots \quad \psi_{\text {initial }}=\psi_{\mathrm{e}^{\prime \prime}} \psi_{\mathrm{v}^{\prime \prime}} \cdots
$$

\mathbf{R} specifies the electronic and nuclear coordinates.
If $\hat{\mu}$ doesn't depend much on nuclear geometry, then

$$
\mathrm{P}_{\mathrm{i} \rightarrow \mathrm{f}} \propto\left|\int \psi_{\mathrm{v}^{\prime}}^{*}(\mathrm{r}) \psi_{\mathrm{v}^{\prime \prime}}(\mathrm{r}) \mathrm{dr}\right|^{2} \quad \text { Franck-Condon Factor }
$$

- Excited state is anharmonic. Vibrational spacing $\Delta \mathrm{v}$ will decrease for higher excitation.
- The electronic spectrum will be a converging series of lines:

From 0-0 transition and convergence
limit \rightarrow get $D_{0}{ }^{\prime}$
Since
$T_{e}+D_{0}{ }^{\prime}=D_{0}+\Delta E_{\text {atomic }}$
if you know $\Delta E_{\text {atomic }}$, you can get D_{0}

Intensities: Dictated by Franck-Condon factor.

- Most probably excitation is to classical turning point.
- So the intensities tell us about $r_{e}^{\prime \prime}-r_{e}^{\prime}$: the displacement.

Position of peak absorption related to displacement

Relaxation of Electronic States

Typically when we electronically excite a molecule, there is a displacement of charge and a new equilibrium nuclear separation.
\rightarrow Leads to vibrational excitation also. The system vibrationally relaxesnonradiatively.

The energy dissipated is λ (reorganization energy).

Now, there is a huge amount of energy to release out to the ground state
\rightarrow Most probable way is fluorescence.

In gas phase: \quad vibrational relaxation $\left(\mathrm{T}_{1}\right) \sim 10^{-12}-10^{-11} \mathrm{~s} \quad 1-10 \mathrm{ps}$ for large molecules

$$
\text { fluorescence }\left(\mathrm{T}_{1}\right) \quad \sim 1-10 \mathrm{~ns}
$$

In solutions: \quad dephasing, T_{2}^{*} fast $\sim 10^{-14} \mathrm{~s} \quad 10-20 \mathrm{fs}$
fluctuations of solvent
vibrational relaxation $\sim 1-10 \mathrm{ps}$
fluorescence $\sim 1-10 \mathrm{~ns}$
Fluorescence is always red-shifted relative to absorption.

