Scission of Dinitrogen by a Molybdenum(III) Xylidene Complex

CHM 5.33 Fall 2005

Introduction

The experiment is based on research performed in the laboratory of Professor Cummins during the early 90's.

Refer to:

Laplaza, Catalina, and Christopher Cummins. "Dinitrogen Cleavage by a Three-Coordinate Molybdenum (III) Complex." *Science* 269 (1995): 861-863.

Aspects of the Lab

The experiment involves basic organic synthesis and introduces some rudimentary aspects of the manipulation of air and moisture sensitive materials.

In addition, students use GC-MS and NMR to characterize the compounds made during the experiment.

The experiment provides a very good context for the discussion of electronic structure and bonding in transition metal complexes.

Chemistry of Nitrogen

Free gaseous atom is a ground-state quartet (2s²2p³)

 $2S + 1 \rightarrow 2(3/2) + 1 = 4$

Nitrogen is trivalent - prefers to form three bonds (NH_3, HCN, N_2)

"three electron oxidant"

Extremely important naturally and synthetically (amino acids, DNA, polymers, fertilizers)

 N_2 (dinitrogen) is the most abundant molecule in the earth's atmosphere comprising $\sim 80\%$

The very stable triple bond ($\Delta H_{dis} = 225$ kcal/mol) renders N₂ practically inert

 N_2 does combine with metals to form nitrides

Nitrogen is a common component of many important natural and synthetic compounds

We need a way to utilize the natural abundance of N_2 as a synthetic feed stock

$$N_2 + 3H_2 \longrightarrow 2NH_3$$

Thermodynamically, the reaction of N_2 with H_2 is favorable

The problem lies in overcoming the kinetic barrier

Biological Nitrogen Fixation

In nature, N_2 is converted to ammonia by bacteria which grow in different forms of plant life and algae. These bacteria contain the "nitrogenase" enzyme which catalytically reduces N_2 to metabolically useful NH_3

The enzymes operate anaerobically at ambient temperature and pressure using a two component metalloprotein: the first contains Fe (electron source), and the second contains both Fe and Mo or V(site of binding and reduction).

Image removed due to copyright reasons. Please see:

Einsle, Oliver et al. "Nitrogenase MoFe-Protein at 1.16 Resolution: A Central Ligand in the FeMo-Cofactor." *Science* 297 (2002): 1696-1700.

In 2002, Rees reported the 1.6 Å resolution crystal structure of nitrogenase showing the presence of an atom in the center of the FeMo cofactor

Industrial Production of Ammonia

Haber-Bosch process:

Fritz HaberCarl Bosch19181931

$$N_2 + 3H_2 \longrightarrow 2NH_3$$

Fe catalyst, 450-650°C and 200-600 atm

This process consumes 1% of the world's total annual energy supply

Why Molybdenum?

In nature, bacteria are able to "fix" nitrogen at ambient T & P this process is catalyzed by the *nitrogenase enzyme* which contains as part of its structure an Fe/Mo cofactor

A coordinatively unsaturated Mo(III) compound could presumably bind a small molecule and reduce it by three electrons

Ti	V	Cr	Mn	Fe	Со	Ni	Cu
Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag

Producing a coordinatively unsaturated Mo(III) complex poses a formidable synthetic challenge

Molybdenum Precursors

Orange crystalline solid

Solid state structure shows *mer* geometry

Mo(III) is paramagnetic and contains 3 unpaired electrons

Eur. J. Inorg. Chem. 2001, 2699

Preparation of the *t*-Butyl Xylidene Ligand

Organometallics, 22, 2003

Advantages of the Ligand

Provide steric bulk to discourage metal-metal bonding and only allow access to small molecules

Combine spherical *t*-butyl groups and planar aromatic groups to allow for better crystallinity

Lack β -hydrogens and silvl groups which provide decomposition pathways

Amido groups are good π -donors and further stabilize electron deficient metal center

Synthesis of Mo[N(*t*-Bu)Ar]₃

¹H NMR of Mo[N(t-Bu)Ar]₃

Image removed due to copyright reasons.

Scission Reaction

<u>Theoretical</u> No calculated barrier to end-on N_2 binding

Calculated activation barrier of 20.8 kcal/mol for break up of the μ -N₂ dimer

J. Am. Chem. Soc., 117, 1995

Electronic Structure of $Mo[t-Bu(Ar)]_3$

 $Mo(III) \longrightarrow d^3$

High spin quartet ground state

Three fold symmetric (C_{3v})

t-Butyl groups lie on one side of the MoN_3 face and aryls on the other sterically protecting the metal atom

Sigma Bonding

The three nitrogen atoms lie in a plane and direct their σ bonding orbitals at 120° towards Mo.

The orbitals on Mo that participate in the σ bonding will be *s*, $d_{x^2-y^2}$, d_{xy} , and to a smaller extent d_{z^2} .

Pi Bonding Contribution

 d_{xy} and $d_{x^2-y^2}$ also participate in π bonding with the p orbitals of the amide ligands this combination of amide p orbitals cannot form π bonds with the metal

MO Diagram

Using ligand field theory, we can develop a MO diagram for the MoL_3 molecule by considering how the ligand orbitals transform in C_{3v} symmetry.

We then consider the symmetry allowed interactions with the orbitals on Mo (s, p, and d).

d-Orbital Configuration

Both crystal field theory and ligand field theory result in an orbital picture that places three unpaired electrons in lower lying non-bonding *d*orbitals

Isolobal Analogy

Ν

Roald Hoffmann Nobel Prize

We will call two fragments *isolobal* if the number, symmetry properties, approximate energy and shape of the frontier orbitals and the number of electrons in them are similar-not identical, but similar.

Nobel lecture, 8 December 1981

Mechanism of N₂ Binding and Activation

MO diagram

See Scheme 1 in Laplaza, Catalina et al. "Dinitrogen Cleavage by Three-Coordinate Molybdenum(III) Complexes: Mechanistic and Structural Data." *J Am Chem Soc* 118 (1996): 8623-8638.

See Scheme 1 in Laplaza, Catalina et al. "Dinitrogen Cleavage by Three-Coordinate Molybdenum(III) Complexes: Mechanistic and Structural Data." *J Am Chem Soc* 118 (1996): 8623-8638. End on binding of N_2

Low temperature encourages N₂ solubility

Only requires 1 atm of pressure

Electronic Structure of NMo[N(*t*-Bu)Ar]₃

The σ and π components of the Mo-N triple bond result in a very strong bonding interaction. This new interaction compensates for the energy lost in breaking the N₂ triple bond.

Potential for Catalysis

In order to create a catalytic system, we must regenerate the MoL_3 complex.

Attempts at using MoL_3 as a N_2 to NH_3 catalyst have thus far been unsuccessful.

Schrock System

See:

Yandulov, Dmitry V., and Richard R. Schrock. "Reduction of Dinitrogen to Ammonia at a Well-Protected Reaction Site in a Molybdenum Triamidoamine Complex." *J Am Chem Soc* 124 (2002): 6252-6253.

See:

Yandulov, Dmitry V., and Richard R. Schrock. "Catalytic Reduction of Dinitrogen to Ammonia at a Single Molybdenum Center." *Science* 301 (2003): 76-78.

Conclusions

The $Mo[N(t-Bu)Ar]_3$ reacts with N₂ at low temperature to cleave the triple bond and form a pair of Mo(VI) nitride complexes.

The reactivity of the MoL_3 fragment can be rationalized by considering the electronic structure of the molecule and the isolobal analogy.

The CHM 5.33 experiments provides a unique opportunity to explore a recent discovery in the area of inorganic chemistry.