
Frequency- and Time-Domain Spectroscopy 

We just showed that you could characterize a system by taking an absorption spectrum.  We 
select a frequency component using a grating or prism, irradiate the sample, and measure how 
much gets absorbed we just change frequency and repeat.   

(1) Absorption Spectrum ↔  Frequency domain 

Vary frequency of driving field. 
Pav(ω) 

 Disperse color → measure power absorbed 
γ

ω0 ω 

The variables ω0 and γ characterize the time-dependent behavior of our H.O. 

So we could also measure these variables if we applied a short driving force and watched the 
coordinate directly. 

(2) Watch coordinate ↔  Time domain 

Q 
e A −γt short driving force → watch relaxation/oscillation 

−γtFext = F0 δ( t ) → Q t( ) = 
F0 e  sin  Ω0t

2π m

Ω0


This is the basis for time-resolved spectroscopy using short pulses of light to exert an impulse 
reponse on the system and watch chemical processes happen.   

Also, all modern NMR instruments work this way, applying a burst of RF radiation to sample in 
field and watch relax. 

The information content is essentially the same in either domain.  Why use time?   

1) All data collected in single observation—faster than collecting one frequency point at a 
time!   

2) Resolving power between peaks is often better. 

In practice, different methods work better for different spectroscopic or different types of 
measurements/information.   



Fourier Transform Relations 

In fact, there is a formal relationship between the time domain and frequency domain  

→ Fourier transform: 

Joseph Fourier showed that any periodic function can be expressed as an expansion in cosines + 
sines. 

∞ 

F t( ) = ∑[a cos(nω′t)+ b sin(nω ′t)] ω′ : base frequencyn n 
n=1 

F(t) ω′ = π / T  

T 

So we can either represent data as the time response, or the value of all of the expansion 
coefficients in freq. → the spectrum! 

na 

nω′ 

For continuous functions, these are related through the Fourier Transform integrals:   

Time domain S t  ) ↔ Frequency domain S (ω)( 

1 +∞

S(t) =
 ∫−∞ 

S ( ) sin ωt d ω ↔ S ( )  1 +∞ 
ω  ω  =  S t sin ωt dt ( )∫−∞2π 2π 

t (( this gives S ( )   if we know S (ω) ) ( this gives S (ω) if we know S t ) ) 

For our harmonic oscillator we find: 

ω  ∝  2S(t) ∝ e−γt sin ω0t ↔ S ( )  γ 

(ω − ω0 ) + γ  2 
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Parameters in the time and frequency domains: 

Parameter Time Domain S(t) Frequency Domain S(ω) 

Large ω0 Fast oscillations High frequency 

Small ω0 Slow oscillations Low frequency 

Large γ Fast decay Broad linewidth 

Small γ Slow decay Narrow linewidth 

Examples of Fourier Transforms 

1) C(t) = e−γtsin(ωt) with ω/2π = ν = 0.1 and γ = 0.01 

(The units of time or frequency are arbitrary – lets call it seconds. The time period for oscillation 
1/ν = 10 sec and the time scale for relaxation is 1/γ = 100 sec) 

S is the Fourier transform of C(t): 

1 
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2) If we have two superimposed oscillations:  C(t) = e−γt sin(ω1t) + e−γt sin(ω2t) 

with ω1/2π = ν1 = 0.1; ω2/2π = ν2 = 0.11; and γ = 0.01 
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then we expect two peaks in the spectrum at the two frequencies, each with linewidth 2γ. 
In time, this manifests itself as two beat frequencies.  One with a time period corresponding to 
the mean frequency (ν1+ν2)/2, and the other to the frequency splitting (ν1−ν2)/2. 

C t( )  

ν t. 
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3) Two superimposed oscillations:  C(t) = A1 exp(−γ1t)sin(ω1t) + A2 exp(−γ2t)sin(ω2t) 
with ω1/2π = ν1 = 0.1; ω2/2π = ν2 = 0.125; γ1 = 1/50; γ2 = 1/10; A1 = 3; A2 = 5. 

C t( )  

A 1 exp γ 1 t.. 

A 2 exp γ 2 t.. 
0 

0 5 10 15 20 

.t 
ν 1 ν 2 

2 

4 

S 2j 

0 
0	 0.05 0.1 0.15 0.2 

ν j 

5.33 Lecture Notes: Time and Frequency Domains Page 4 



10 

4) A sum of harmonics in ω: C(t) = ∑exp(−γt) n sin( ωt) with ω/2π = ν = 0.03 and γ = 0.01. 
n=1 

These are similar to what you will see in rotational and rotational-vibrational spectra.  A regularly 
spaced set of absorption features represent a behavior in time, where all frequencies constructively 
interfere at periodic multiples of the fundamental period (recurrences). 
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Damping  
Time-dependent process that influences the amplitude or phase of an oscillating 
system. 

For a single molecule, the decay is due to loss of energy  

1) Interaction with environment  (friction → heat or nonradiative relaxation) 
2) Emission of radiation (radiative) 

The decay rate is the given by the lifetime, T1. (γ = 1/Τ1) Linewidth: “lifetime broadening”. 

We make measurements on large numbers of molecules: “ensembles.” 

Properties of the collection can influence observed relaxation effects.  For N molecules: 

N N 

( )Q t  = ( )iQ t∑ = i t 
iA  e  −γ∑ ( )isin  tΩ 

i 1= i 1= 

For all molecules behaving identically: Observed decay rate is lifetime. 

What happens if the frequencies are a bit different?

   Time Domain Frequency Domain 

Q1 

Q3 

Q2 

〈Q〉 

Q4 

tinhome γ− 

1ω 

2ω 

3ω 

4ω 

inhom2γ 

The microscopic damping is masked and the observed damping reflects the distribution in Ω0. 
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What about phase? 

We use a light field that drives all oscillators in 
phase, but the oscillator phase can vary in time → 
for instance, collisions.   

 Destructive interference → pure dephasing 

Pure dephasing time: T2
* 

〈Q〉 

eff t ee −− =γ T t * 

There are other damping processes: 

•	 For instance, in your NMR experiment you measure the rates of exchange between pyruvic 
acid and dihydroxypropanoic acid by measuring linewidths.  This is dephasing due to 
exchange between two species with distinct frequencies: 

molecule 1 

molecule 2 〈Q〉 

molecule 3 τte− 

When averaged over all molecules, the destructive interference due to hopping between sites 
leads to a decay that reflects the mean residence time, τ. 

•	 Also, rotational motion also contributes to linewidth. 

All processes that influence the amplitude or phase of oscillations are observed in a spectrum. 
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The damping rate of an ensemble is a sum over all relaxation rates: 

+ "γ = γlifetime + γdephasing + γinhom 

1 1 1 
= + + " 

T2 T1 T2
* 

γ2 

How can you separate these in a spectrum?  You can’t without additional measurement. 

in gas—organics mainly lifetime . . . 

in room temperature solution—mainly dephasing (IR and electronic) 

in low T systems (liquids/crystals) —γinhom
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