Vibrational-Rotational Spectrum of Heteronuclear Diatomic

Absorption of mid-infrared light ($\sim 300-4000 \mathrm{~cm}^{-1}$):

- Molecules can change vibrational and rotational states
- Typically at room temperature, only ground vibrational state populated but several rotational levels may be populated.
- Treating as harmonic oscillator and rigid rotor: subject to selection rules

$$
\begin{aligned}
& \Delta \mathrm{v}= \pm 1 \text { and } \Delta \mathrm{J}= \pm 1 \\
& E_{\text {field }}=\Delta E_{\text {vib }}+\Delta E_{\text {rot }} \\
& \hbar \omega=E_{f}-E_{i}=E\left(v^{\prime}, J^{\prime}\right)-E\left(v^{\prime \prime}, J^{\prime \prime}\right) \\
& \bar{v}=\frac{\omega}{2 \pi c}=\left[\bar{v}_{0}\left(v^{\prime}+\frac{1}{2}\right)+\bar{B} J^{\prime}\left(J^{\prime}+1\right)\right]-\left[\bar{v}_{0}\left(v^{\prime \prime}+\frac{1}{2}\right)+\bar{B} J^{\prime \prime}\left(J^{\prime \prime}+1\right)\right]
\end{aligned}
$$

At room temperature, typically $\mathrm{v}^{\prime \prime}=0$ and $\Delta \mathrm{v}=+1$:

$$
\bar{v}=\bar{v}_{0}+\bar{B}\left[J^{\prime}\left(J^{\prime}+1\right)-J^{\prime \prime}\left(J^{\prime \prime}+1\right)\right]
$$

Now, since higher lying rotational levels can be populated, we can have:

$$
\begin{array}{llll}
\Delta J=+1 & J^{\prime}=J^{\prime \prime}+1 & \bar{v}=\bar{v}_{0}+2 \bar{B}\left(J^{\prime \prime}+1\right) & R \text { - branch } \\
\Delta J=-1 & J^{\prime}=J^{\prime \prime}-1 & \bar{v}=\bar{v}_{0}-2 \bar{B} J^{\prime \prime} & P-\text { branch }
\end{array}
$$

By measuring absorption splittings, we can get $\overline{\mathrm{B}}$. From that, the bond length!
In polyatomics, we can also have a Q branch, where $\Delta \mathrm{J}=0$ and all transitions lie at $\bar{v}=\bar{v}_{0}$. This transition is allowed for perpendicular bands: $\partial \mu / \partial q \perp$ to molecular symmetry axis.

Intensity of Vibrational-Rotational Transitions

There is generally no thermal population in upper (final) state ($\mathrm{v}^{\prime}, \mathrm{J} \mathrm{J}^{\prime}$) so intensity should scale as population of lower J state (J").

$$
\begin{aligned}
\Delta N & =N\left(v^{\prime}, J^{\prime}\right)-N\left(v^{\prime \prime}, J^{\prime \prime}\right) \approx N\left(J^{\prime \prime}\right) \\
N\left(J^{\prime \prime}\right) & \propto g\left(J^{\prime \prime}\right) \exp \left(-E_{J^{\prime \prime}} / k T\right) \\
& =\left(2 J^{\prime \prime}+1\right) \exp \left(-h c \bar{B} J^{\prime \prime}\left(J^{\prime \prime}+1\right) / k T\right)
\end{aligned}
$$

Rotational Populations at Room Temperature for $\mathrm{B}=5 \mathrm{~cm}^{-1}$

So, the vibrational-rotational spectrum should look like equally spaced lines about v_{0} with sidebands peaked at $\mathrm{J}{ }^{\prime}>0$.

- Overall amplitude from vibrational transition dipole moment
- Relative amplitude of rotational lines from rotational populations

In reality, what we observe in spectra is a bit different.

Vibration and rotation aren't really independent!

Two effects:

1) Vibration-Rotation Coupling:

For a diatomic: As the molecule vibrates more, bond stretches
\rightarrow I changes $\rightarrow \overline{\mathrm{B}}$ dependent on v .

$$
\bar{B}=\bar{B}_{e}-{\underset{\uparrow}{e}}\left(\mathrm{v}+\frac{1}{2}\right)
$$

Vibrational-rotational coupling constant!
2) Centrifugal distortion: As a molecule spins faster, the bond is pulled apart \rightarrow I larger $\rightarrow \overline{\mathrm{B}}$ dependent on J

$$
\begin{aligned}
& \bar{B}=\bar{B}_{e}-D_{e} J(J+1) \\
& \text { Centrifugal distortion term }
\end{aligned}
$$

So the energy of a rotational-vibrational state is:

$$
\frac{E}{h c}=\bar{v}_{0}\left(\mathrm{v}+\frac{1}{2}\right)+\bar{B}_{e} J(J+1)-\alpha_{e}\left(\mathrm{v}+\frac{1}{2}\right) J(J+1)-D_{e}[J(J+1)]^{2}
$$

Analysis in lab:

Combination differences - Measure $\Delta \Delta \mathrm{E}$ for two transitions with common state

Common J'

$\Delta \mathrm{E}_{\mathrm{R}}-\Delta \mathrm{E}_{\mathrm{P}}=\left(\overline{\mathrm{B}}_{\mathrm{e}}-\frac{1}{2} \alpha\right)\left(4 \mathrm{~J}^{\prime}+2\right)$
$\uparrow B^{\prime \prime}$

$$
B^{\prime}-B^{\prime \prime}=\alpha
$$

Vibrations of Polyatomic Molecules - Normal Modes

- Remember that most of the nuclear degrees of freedom are the vibrations!

3n-6 nonlinear 3n-5 linear

- It was clear what this motion was for diatomic (only one!).
- For a polyatomic, we often like to think in terms of the stretching or bending of a bond. - This "local mode" picture isn’t always the best for spectroscopy.
- The local modes aren't generally independent of others! The motion of one usually influences others.

EXAMPLE: CO_{2}
local modes
stretch

Not independent C.O.M. translates.

Which normal modes are IR active?

