Due in class: Tuesday, Feb. 20, 2007 at 12:05 pm.

1. For each molecule:

- Indicate whether or not it is chiral or achiral at $25^{\circ} \mathrm{C}$.
- Assign absolute configuration to all stereocenters using the Cahn-Ingold-Prelog convention.
- For achiral molecules, describe the symmetry element.
a.

b.

c.

d.

e.

f.

g.

h.

2. For each pair of compounds:

- Specify the isomeric relationship (i.e., identical, constitutional
isomers, diastereomers, or enantiomers).
- Assign absolute configuration to all stereocenters using the Cahn-Ingold-Prelog convention.
a.

b.

c. $\mathrm{MeO}_{2} \underbrace{\mathrm{M}}_{\dot{\mathrm{Me}}}$

3. For each of the circled groups indicate their topological relationship

4. Consider the following reaction:

(optically pure)

P-I
\square
P-II
a) Provide the structure of the two principal addition products, clearly indicating stereochemistry, and assign the Cahn-Ingold-Prelog configuration to each stereocenter of the SM and products.
b) Indicate whether each product is a chiral or an achiral compound.
P-I —Chiral

- Achiral
P-II — Chiral
- Achiral
c) What is the isomeric relationship between the two products (i.e. constitutional isomers, enantiomers, or diastereomers).
d) Do you expect the products to be formed in equal (1:1) or unequal amounts.
e) Draw a reaction coordinate diagram that is consistent with your answer in part 4d, clearly labeling the position of P-I, P-II, SM, and transition state structure(s).

5. Consider the following data:

a) Explain why the activation energy for inversion of $\mathbf{2}$ is greater than that for $\mathbf{1}$. Provide an energy diagram.
b) Why is the activation energy for inversion of $\mathbf{3}$ less than that for $\mathbf{2}$. Provide an energy diagram.
c) Why is the activation energy for inversion of $\mathbf{4}$ less than that for $\mathbf{2}$. Provide an energy diagram.

6. Consider the following two esters:

Ester \mathbf{A} is observed to undergo base catalyzed hydrolysis 20 times faster than ester \mathbf{B}. Provide an explanation for this result and support your answer using clear and detailed drawings.

