5.61 Fall 2013
 Problem Set \#4

Suggested Reading: McQuarrie, Chapter 5

1. $\langle x\rangle_{t}$ and $\left\langle p_{x}\right\rangle_{t}$ follow Newton's Laws!
A. McQuarrie, page 187, Problem 4-43.
B. McQuarrie, page 188, Problem 4-44.
C. McQuarrie, page 250, Problem 5-35.
2. Survival Probabilities for Wavepacket in Harmonic Well

Let $V(x)=\frac{1}{2} k x^{2}, k=\omega^{2} \mu, \omega=10, \mu=1$.
A. Consider the three term $t=0$ wavepacket

$$
\Psi(x, 0)=c \psi_{1}+c \psi_{3}+d \psi_{2}
$$

Choose the constants c and d so that $\Psi(x, 0)$ is both normalized and has the largest possible negative value of $\langle x\rangle$ at $t=0$. What are the values of c and d and $\langle x\rangle_{t=0}$?
HINT: the only non-zero integrals of the form

$$
x_{\mathrm{v}, \mathrm{v}+n}=\int d x \psi_{v}^{*} \hat{x} \psi_{v+n}
$$

are those with $n= \pm 1$.
B. Compute and plot the time-dependence of $\langle\hat{x}\rangle$ and $\langle\hat{p}\rangle$. Do they satisfy Ehrenfest's theorem about motion of the "center" of the wavepacket?
C. Compute and plot the survival probability

$$
P(t)=\left|\int d x \Psi *(x, t) \Psi(x, 0)\right|^{2}
$$

Does $P(t)$ exhibit partial or full recurrences or both?
D. Plot $\Psi *\left(x, t_{1 / 2}\right) \Psi\left(x, t_{1 / 2}\right)$ at the time, $t_{1 / 2}$, defined as one half the time between $\mathrm{t}=0$ and the first full recurrence. How does this snapshot of the wavepacket look relative to the $\Psi^{*}(x, 0) \Psi(x, 0)$ snapshot? Should you be surprised?

3. Vibrational Transitions

The intensity of a transition between the initial vibrational level, v_{i}, and the final vibrational level, v_{f}, is given by

$$
I_{v_{f}, v_{i}}=\left|\int \psi_{v_{f}}^{\star}(x) \hat{\mu}(x) \psi_{v_{i}}(x) d x\right|^{2}
$$

where $\mu(x)$ is the "electric dipole transition" moment function

$$
\begin{aligned}
\hat{\mu}(x) & =\mu_{0}+\left.\frac{d \mu}{d x}\right|_{x=0} \hat{x}+\left.\frac{d^{2} \mu}{d x^{2}}\right|_{x=0} \frac{\hat{x}^{2}}{2}+\text { higher-order terms } \\
& =\mu_{0}+\mu_{1} \hat{x}+\mu_{2} \hat{x}^{2} / 2+\mu_{3} \hat{x}^{3} / 6+\ldots
\end{aligned}
$$

Consider only μ_{0}, μ_{1}, and μ_{2} to be non-zero and note that all $\psi_{v}(x)$ are real. You will need some definitions from Lecture Notes \#9:

$$
\begin{aligned}
\hat{x} & =\left(\frac{2 \mu \omega}{\hbar}\right)^{-1 / 2}\left(\hat{\mathbf{a}}+\hat{\mathbf{a}}^{\dagger}\right) \\
\hat{\mathbf{a}} \psi_{v} & =v^{1 / 2} \psi_{v-1} \\
\hat{\mathbf{a}}^{\dagger} \psi_{v} & =(v+1)^{1 / 2} \psi_{v+1} \\
{\left[\hat{\mathbf{a}}, \hat{\mathbf{a}}^{\dagger}\right] } & =+1
\end{aligned}
$$

A. Derive a formula for all $v+1 \leftarrow v$ vibrational transition intensities. The $v=1 \leftarrow v=0$ transition is called the "fundamental".
B. What is the expected ratio of intensities for the $v=11 \leftarrow v=10$ band ($\mathrm{I}_{11,10}$) and the $v=1 \leftarrow v=0$ band $\left(\mathrm{I}_{1,0}\right)$?
C. Derive a formula for all $v+2 \leftarrow v$ vibrational transition intensities. The $\mathrm{v}=2 \leftarrow v=0$ transition is called the "first overtone".
D. Typically $\left(\frac{2 \mu \omega}{\hbar}\right)^{-1 / 2}=1 / 10$ and $\mu_{2} / \mu_{1}=1 / 10$. Estimate the ratio $I_{2,0} / I_{1,0}$.
4. $\hat{\mathbf{a}}^{\dagger}, \hat{\mathbf{a}}$ Operators
A. Selection rules: state the v_{f}, v_{i} selection rule for the following integrals:

$$
\int \Psi_{v_{f}} \hat{O} p \Psi_{v_{i}} d x
$$

Where $\hat{O} p$ is
(i) $\quad c_{1}\left(\hat{\mathbf{a}}^{\dagger}\right)^{2} \hat{\mathbf{a}}^{3} \hat{\mathbf{a}}^{\dagger}$
(ii) $\quad c_{2}(\hat{\mathbf{a}})^{14}\left(\hat{\mathbf{a}}^{\dagger}\right) \hat{\mathbf{a}}\left(\hat{\mathbf{a}}^{\dagger}\right)^{10}$
(iii) $c_{3} \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} \hat{a}^{\dagger} \hat{\mathbf{a}} \hat{\mathbf{a}}^{\dagger}$
B. Values of integrals: Evaluate the following integrals (all obtained "by inspection")
(i) $\int \psi_{v+3}\left(\hat{\mathbf{a}}^{\dagger}\right)^{4} \hat{\mathbf{a}} \psi_{v} d x$
(ii) $\int \psi_{v} \hat{\mathbf{a}}^{\dagger} \hat{a}^{\mathbf{a}} \hat{a}^{\dagger} \psi_{v} d x$
(iii) $\int \psi_{10}\left(\hat{\mathbf{a}}^{\dagger}\right) \psi_{0} d x$
C. $\quad \hat{x}=2^{-1 / 2}\left(\hat{\mathbf{a}}+\hat{\mathbf{a}}^{\dagger}\right)$
$\hat{\tilde{p}}=2^{-1 / 2} i(\hat{\mathbf{a}}-\hat{\mathbf{a}})$
Evaluate the following integrals:
(i) $\int \psi_{v+4} \hat{\tilde{x}}^{3} \hat{\tilde{p}}^{2} \psi_{v} d x$
(ii) $\int \psi_{v+5} \hat{\tilde{x}}^{3} \hat{\tilde{p}}^{2} \psi_{v} d x$
(iii) $\int \psi_{10} \hat{\tilde{x}}^{10} \psi_{0} d x$
(iv) Is $\int \psi_{8} \hat{x}^{10} \psi_{0} d x$ nonzero? (If it is, do not bother to evaluate it.)

5. More Wavepacket

$\sigma_{x} \equiv\left[\left\langle\hat{x}^{2}\right\rangle-\langle\hat{x}\rangle^{2}\right]^{1 / 2}$
$\sigma_{p_{x}} \equiv\left[\left\langle\hat{p}^{2}\right\rangle-\langle\hat{p}\rangle^{2}\right]^{1 / 2}$
$\Psi_{1,2}(x, t)=2^{-1 / 2}\left[e^{-i \omega t} \psi_{1}+e^{-2 i \omega t} \psi_{2}\right]$
$\Psi_{1,3}(x, t)=2^{-1 / 2}\left[e^{-i \omega t} \psi_{1}+e^{-3 i \omega t} \psi_{3}\right]$
A. Compute $\sigma_{x} \sigma_{p_{x}}$ for $\Psi_{1,2}(x, t)$.
B. Compute $\sigma_{x} \sigma_{p_{x}}$ for $\Psi_{1,3}(x, t)$.
C. The uncertainty principle is

$$
\sigma_{x} \sigma_{p_{x}} \geq \hbar / 2
$$

The $\Psi_{1,2}(x, t)$ wavepacket is moving and the $\Psi_{1,3}(x, t)$ wavepacket is "breathing". Discuss the time dependence of $\sigma_{x} \sigma_{p_{x}}$ for these two classes of wavepacket.

MIT OpenCourseWare
http://ocw.mit.edu

5.61 Physical Chemistry

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

