
5.61 Fall 2013
Problem Set #5

Suggested Reading: McQuarrie, Pages 396-409

1. Harmonic Oscillator Subject to Perturbation by an Electric Field

This problem is related to the example discussed in Lecture #13.5 of a harmonic
oscillator perturbed by an oscillating electric field. An electron is connected by a
harmonic spring to a fixed point at x = 0. It is subject to a field–free potential energy

1
V (x) = kx2.

2

The energy levels and eigenstates are those of a harmonic oscillator where

ω = [k/me]
1/2

Ev = }ω(v + 1/2)

ψv(x) = (v!)−1/2(â†)vψv=0(x).

Now a constant electric field, E0, is applied and V (x) becomes

1
V (x) =

2
kx2 + E0ex (e > 0 by definition).

Note on dipole interactions and signs:

The interaction energy of a charge q located at position x in a uniform DC
electric field E0 is aways

H = −µE0 = −E0qx.

Note the negative sign! This means that when a dipole, ~µ = q~x, points along the same
direction as an electric field, there is a favorable interaction (i.e. negative interaction
energy).

For an electron, q = qe− ≡ −e, where e is the elementary charge and is strictly
positive, making the electron’s charge negative. Therefore, an electron in a field in
the +x direction has an interaction expressed as

H = −~µ · ~E0 = −E0qe−x = −E0(−e)x = +E0ex.

As the electron’s position x increases, its interaction energy with the field increases
(assuming E0 > 0, i.e. the field points in the +x direction). This makes physical
sense: we know from 8.02 that an electron likes to go away from the direction that
the field points (and positive charges like to go toward the direction of the field).



You are going to approach this problem two ways:

(i) by a simple and exact way first, and then

(ii) by perturbation theory.

A. Solve for xmin, V (xmin), and V (x′) where x′ = x−xmin for this harmonic oscillator
in a constant electric field. Is the system still a harmonic oscillator? What is ω
for this oscillator?

B. Write an expression for the energy levels as a function of the strength of the
electric field.

C. One definition of the polarizability, α, is the second derivative of the energy with
respect to the electric field

d2E
αv = − v

.
dE2

0

What is the value of αv? Is it v–dependent?

D. Another definition of the polarizability is

µ(E0)− µ(E = 0) = αE0

where µ is the electric dipole moment. Using this definition of α, what is µ(E0)?

E. Now let’s approach this problem by perturbation theory. The zero-order energies
and wavefunctions are those of the harmonic oscillator at E0 = 0. The perturba-
tion term is

H(1) = E0ex̂

where x̂ is the usual harmonic oscillator

̂
displacement coordinate. If

x̂ =

(
}

+
2

)1/2

(â â†),
µω

write a general formula for all of the non-zero

xv′,v ≡
∫
dxψ?v xψˆ′ v

integrals.

F. Using the value you found for xv′,v write all of the E0–dependent values for Ĥ
(1)
v′,v

and then compute the energy levels of the harmonic oscillator perturbed by a
electric field, where

E = E(0) + E(1) + E(2)
v v v v

and the perturbed wavefunctions are

ψv = ψ(0)
v + ψ(1)

v .
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d2Ev
G. Using compute the polarizability, αv. Is the polarizability v–dependent?

dE2
0

Does αv agree{ with} the value you obtained in part C?

(1)
H. Using the ψv , compute µv using

µv = e

∫
dxψ?vxψˆ v

where the ψv here are the perturbed ψv. Is µ v–dependent? Should it be v–
dependent? Does it agree with the result you obtained in part D?

2. Perturbation Theory for a Particle in a modified infinite box

Ĥ(0) = p̂2/2m+ V (0)(x)

V (0)(x) = x < 0, x > a

V (0)

∞
(x) = 0 0 ≤ x ≤ a

Ĥ(1) = V ′(x)

a b
V ′(x) = 0 x <

−
2

, x >
a+ b

2
a

V ′(x) = −V0
− b
2

< x <
a+ b

, V0 > 0
2

where a > 0, b > 0, and a > b.

A. Draw V (0)(x) + V ′(x).
(0) (0)

B. What are ψn (x) and En ?

C. What is the selection rule for non-zero integrals

H(1)
nm =

∫
dxψ(0)

n Ĥ(1)ψ(0)
m ?

D. Use
1

sinA sinB = [cos(A
2

−B)− cos(A+B)]

and ∫
1

dx cosCx = sinCx
C

(0) (1) (2)
to compute En = En + En + En for n = 0, 1, 2, and 3 and limiting the
second-order perturbation sums to n ≤ 5.

E. Now reverse the sign of V0 and compare the energies of the n = 0, 1, 2, 3 levels
for V0 > 0 vs. V0 < 0.
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3. Perturbation Theory for Harmonic Oscillator Tunneling Through a δ–function Barrier

V (x) = (k/2)x2 + Cδ(x) (1)

where C > 0 for a barrier. δ(x) is a special, infinitely narrow, infinitely tall function
centered at x = 0. It has the convenient property that∫ ∞

δ(x)ψv(x)dx = ψv(0) (2)
−∞

where ψv(0) is the value at x = 0 of the vth eigenfunction for the harmonic oscillator.
Note that, for all v = odd, ∫ ∞

δ(x)ψodd(x)dx = 0 (3)
−∞

A. (i) The {ψv} are normalized in the sense∫ ∞
|ψv|2 dx = 1 (4)

−∞

What are the units of ψ(x)?

(ii) From Eq. (2), what are the units of δ(x)?

(iii) V (x) has units of energy. From Eq. (1), what are the units of the constant,
C?

B. In order to employ perturbation theory, you need to know the values of all integrals
of Ĥ(1)

H(1)∫ ≡ Cδ(x) (5)
+∞

ψv′(x)H

̂
−∞

̂ (1)ψv(x)dx = Cψv′(0)ψv(0) (6)

Ĥ(0)ψv(x) = }ω(v + 1/2)ψv(x). (7)

(1) (2)
Write general formulas for Ev and Ev (do not yet attempt to evaluate ψv(0)
for all even–v). Use the definitions in Eqs. (8) and (9).

E(1) = H(1)
v vv (8)

2

E(2)
v =

v

∑
′=v

(
(1)

Hvv′

)
6

(9)
(0)
v − (0)

E Ev′

C. The semi-classical amplitude of ψ(x) is proportional to [v (x)]−1/2
classical where

vclassical(x) is the classical mechanical velocity at x

1
vclassical(x) = pclassical(x)/µ = [2µ(Ev

µ
− V (x))]1/2. (10)
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At x = 0, vclassical(0) =
[

2}ω(v+1/2)
]1/2

. The proportionality constant for ψ(x) is
µ

obtained from the ratio of the time it takes to move from x to x+ dx to the time
it takes to go from x (E− v) to x+(Ev).

ψ(0)2 dx/vclassical(0)
dx =

τv/2

2dx
=
vclassical(0)(h/}ω)

=
2ωdx

2πvclassical(0)

ψv(0) ≈
[

(ω/π)

v

]1/2

for even-v
classical(0)

(1)
Use this semi-classical evaluation of ψv(0) to estimate the dependence of Hvv and

(2)
Hvv on the vibrational quantum numbers, v and v′.′

D. Make the assumption that all terms in the sum over v′ (Eq. (9)) except the v, v+2
(2)

and v, v − (0) (1)
2 terms are negligibly small. Determine Ev = Ev + Ev + Ev and

comment on the qualitative form of the vibrational energy level diagram. Are the
(0)

odd–v levels shifted at all from their Ev values? Are the even–v levels shifted up
(0)

or down relative to Ev ? How does the size of the shift depend on the vibrational
quantum number?

E. Estimate E1−E0 and E3−E2. Is the effect of the δ–function barrier on the level
pattern increasing or decreasing with v?

F. Sketch (freehand) Ψ(x, t = 0) = 2−1/2[ψ0(x) + ψ1(x)]. Predict the qualitative
behavior of Ψ?(x, t)Ψ(x, t).

G. Compute 〈x̂〉t for the coherent superposition state in part F. Recall that

xv+1,v = (some known constants)

∫
ψv+1(â + â†)ψvdx.

H. Discuss what you expect for the qualitative behavior of 〈x̂〉t for the v = 0, 1
superposition vs. that of the v = 2, 3 superposition state. How will the right↔left
tunneling rate depend on the value of C?

4. Anharmonic Oscillator

The potential energy curves for most stretching vibrations have a form similar to a
Morse potential

VM(x) = D[1− e−βx]2 = D[1− 2e−βx + e−2βx].

Expand in a power series

VM(x) = D

[
2 7
β x2 − β3x3 + β4x4 + . . .

12

]
.

In contrast, most bending vibrations have an approximately quartic form

1
VQ(x) = kx2 + ax4.

2
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Here is some useful information:

x̂3 =

(
} 3

2µω

) /2

(â + â†)3

x̂4 =

(
} 2

2µω

)
(â + â†)4

ω = (k/µ)1/2

ω̃
(k/µ)1/2

=
2πc

(â + â†)3 = â3 + 3(N̂ + 1)â + 3N â† + â†3

(â + â†)4 = â4 + â2[4N

̂̂ − 2] + [6N̂2 + 6N̂ + 3] + â†2(4N + 6) + â†4

N̂ = â†â.

̂
The power series expansion of the vibrational energy levels is

Ev = hc ω(v + 1/2)− ωx̃(v + 1/2)2 + ωỹ(v + 1/2)3 .

A. For a Morse potential,

[
use perturbation theory to obtain the

]
relationships be-

tween (D, β) and (ω

˜
, ωx̃, ωỹ). T

˜
reat the (â + â†

˜
)3 term through second–order

perturbation theory and the (â + â†)4 term only through first order perturbation
theory.

˜ ˜ ˜
[HINT: you will find that ω̃ỹ = 0.]

B. Optional Problem

For a quartic potential, find the relationship between (ω, ωx̃, ωỹ) and (k, b) by
treating (â + â†)4 through second–order perturbation theory

˜ ˜
.

5. Phase Ambiguity

˜

When one uses â, â† and N operators to generate all Harmonic Oscillator wavefunctions
and calculate all integrals,̂ it is easy to forget what the explicit functional forms are
for all of the ψv(x). In particular, is the innermost (near x ) or outermost (near x− +)

lobe of the ψv always positive? Use â† = 2−1/2 x̃− i p̃ to show that the outermost

lobe of all ψv(x) is always positive, given that

(̂ ̂)

ψv(x) = [v!]−1/2(â†)vψ0(x)

and that ψ0(x) is a positive Gaussian. Apply x̂ and −ip̂ to the region of ψ0(x) near
x+(E0) to discover whether the region of ψ1(x) near x+(E1) is positive or negative.
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