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 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
Department of Chemistry 

 
5.61 Quantum Mechanics  

Fall 2013 
Problem Set #7

Reading Assignment: McQuarrie 9.1-9.5, 10.1-10.5,Matlab and Linear Algebra Handouts 
( = Easier   = More Challenging  =Most Challenging; =Computer) 

 
 

1. / Later in the course, we will find a very useful connection between quantum 
mechanical eigenvalue problems and matrix eigenvalue problems.  To prepare for that, 
we want to practice using a computer to solve a not-so-simple matrix eigenvalue 
problem. Use your favorite software package to compute the eigenvalues and 
eigenvectors of the following matrix: 

⎛ α β 0 0 β ⎞
⎜ β α β β⎜ 0 ⎟

⎟
⎜ 0 β α β 0 ⎟  
⎜ ⎟
⎜ 0 β β α β ⎟
⎜⎝ β 0 0 ⎟β α ⎠

Be careful to make sure your eigenvectors are orthonormal. Compare the results to the 
eigenvectors you get for the matrix: 

  
⎛ α β 0 0 0 ⎞
⎜ β α⎜ 0 0 0 ⎟

⎟
⎜ 0 0 α β β ⎟  
⎜ ⎟
⎜ 0 0 β α β ⎟
⎜⎝ 0 0 ⎟β β α ⎠

What differences do you see in the eigenvectors? [Note: if you use Matlab, it will prove 
useful to write each of these matrices as α times the identity matrix plus β times another 
matrix. Call this other matrix M. You will then need to convince yourself that the 
eigenvectors of the full matrix are the same as the eigenvectors of M.]  
 

2.  As you have been taught in your earlier chemistry classes, the s and p orbitals are not 
the most appropriate way to think about atomic orbitals in, say, methane.  Instead, it is 
useful to consider sp3 hybrid orbitals: 
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a. Just as { }2 ,s p2 x y, 2p , 2pz  are orthonormal, the sp3 hybrid orbitals above are also 

orthonormal.  Go one step toward proving this by showing that ψ1 is normalized 
and that ψ1 and ψ2 are orthogonal to each other. Note that it is possible to do this 
without computing any integrals. 

b. Show that for a hydrogen atom the sp3 hybrid orbitals are degenerate with 
eigenvalue Esp3 = −3.4  eV.  Note that it is possible to do this without computing 

any integrals. 
c. The salient difference between the sp3 orbitals and the s and p orbitals is that each 

of the sp3 orbitals points in a particular direction, whereas the hydrogenic orbitals 
are directionless.  For ψ1 compute the average value of z and show that ẑ

2 

< 0 , so 

that ψ1 “points” in the -z direction. Hint: You will want to use reflection symmetry 
to prove that all but two of the 4x4=16 integrals are zero. 

3. � Suppose you have a potential for which the selection rules dictate that there are only 
three allowed transitions at frequencies ωA, ωB and ωC respectively. The spectrum for one 
electron in this potential looks like this: 

 
a. Now, suppose you have two non-interacting electrons in this potential.  What will 

the allowed transitions be? What will the frequencies of these transitions be? 
b. Based on your answers to part a., draw the spectrum for two electrons in this 

potential. 
c. Now suppose the electrons interact weakly.  Sketch how the electron-electron 

repulsion will change your spectrum.  Justify your sketch noting what changes 
you expect to see in the selection rules and the transition energies.  

4. � For two electrons, the total z component of the spin angular momentum for the 
system is 

Ŝz,total = Ŝz1 + Ŝz2

while the total spin operator is given by: 
ˆ ˆ ˆ ˆ ˆ ˆ 2 ˆ ˆ 2 ˆ ˆ 2
S2

total = S2 2 2
x,total + Sy,total + Sz,total = ( )Sx1 + Sx2 + ( )Sy1 + Sy2 + ( )Sz1 + Sz2

a. Show that both 
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1 11 1s sα β( ) 2 (1)
Ψαβ = ≡ (1 1s sα β( )2 (2) − 2sβ (1)1sα (2))  

2 21 2s sα β( ) 2 (2)
and  

1 11 1s sβ α( ) 2 (1)
Ψβα = ≡ (1 1s sβ α( )2 (2)− 2sα (1)1sβ (2)) 1 2s sβ α2 2( ) ( )2 2

are antisymmetric.  Show also that αβΨ  and βαΨ  are eigenfunctions of 
Ŝz,total .  What are the eigenvalues in each case? 

b. Show that, while αβΨ  and βαΨ  cannot be written in the form 

� 

ΨspaceΨspin  yet 
the combinations αβ βαΨ ±  can both be cast in the form 

� 

ΨspaceΨspin . 
c. Verify that the total spin operator can be re-written in terms of raising and 

lowering operators: 
Ŝtotal
2 = Ŝ1

2 + Ŝ2
2 + 2Ŝ1zŜ2z + Ŝ1+Ŝ2− + Ŝ1−Ŝ2+( )  

d. Show that neither αβΨ  nor βαΨ  is an eigenfunction of Ŝtotal2 . That is to say, 
show that neither of these wavefunctions is a total spin eigenstate. 

e. Finally, show that the combinations αβ βαΨ ±  are eigenfunctions of both 
Ŝz,total  and Ŝtotal2 .   

f. Note that αβΨ , βαΨ  and αβ βαΨ ±  are all degenerate states within the 
noninteracting electron picture. Comment on why your work above shows 
that αβ βαΨ ±  are more realistic eigenstates of the Hamiltonian. 

 
5. / Consider a universe where the electron has spin 5/2 instead of spin 1/2.  

a. Draw the periodic table (up to Halfnium) in this alternate universe. 
b. What elements would be “noble gases”? Which would be alkali earth 

elements?  What elements would be in the same period as carbon? 
c. What would the bond order of He2 be in this universe? What about O2? 
d. What would the equivalent of the octet rule be in this alternate universe? 

[Note: you could spend a lot of time answering this last question. It is 
intended to be fun. When it stops being fun, your answer is long enough.] 

 
6.  The following concern the independent particle model. You may find the 

following set of Coulomb and exchange integrals useful (energies in eV) : 
J1s1s = 17.0 Z      J1s2s = 4.8 Z         K1s2s = 0.9 Z         J2s2s = 3.5 Z 
 
J1s2p = 6.6 Z               K1s2p = 0.5 Z          J2s2p = 4.4 Z      K2s2p = 0.8 Z 
 
J2pi2pi= 3.9 Z              J2pi2pk= 3.5 Z          K2pi2pk= 0.2 Z  (i≠k) 

a. Using the independent particle model discussed in class, what is the energy 
difference between the 1s22px

2 configuration and the 1s22s2 configuration? 
How do you justify your result? 

Ψ

Ψ

Ψ

Ψ
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b. What is the energy difference between the ground state of Lithium and the 
spin polarized 1s↑2s↑2pz

↑ state? Is this energy about the size you expected? 
c. Use the IPM to compute the ionization potential of B: IP=E(B+)-E(B).  

Compare your boron result with the ionization potential of Lithium within 
the IPM. Does this agree with periodic trends? 

d. Finally, compare the ionization potentials computed in part c. with the 
experimental results [IP(Li)=5.4 eV, IP(B)=8.3 eV] and the answer you 
would have gotten if you had assumed the electrons do not interact. 

e. Within the IPM, what is the energy difference between a closed shell 
1s22s22px

2 configuration and a high spin 1s22s↑2px
↑2py

↑2pz
↑ configuration 

for carbon? Does this agree with your intuition? 
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