MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry

5.61 Quantum Mechanics

Fall 2013
Problem Set \#7
Reading Assignment: McQuarrie 9.1-9.5, 10.1-10.5,Matlab and Linear Algebra Handouts
(0 Easier $\square=$ More Challenging $\leqslant=$ Most Challenging; $\boldsymbol{\sim}=$ =Computer $)$

1. $/$ Later in the course, we will find a very useful connection between quantum mechanical eigenvalue problems and matrix eigenvalue problems. To prepare for that, we want to practice using a computer to solve a not-so-simple matrix eigenvalue problem. Use your favorite software package to compute the eigenvalues and eigenvectors of the following matrix:

$$
\left(\begin{array}{lllll}
\alpha & \beta & 0 & 0 & \beta \\
\beta & \alpha & \beta & \beta & 0 \\
0 & \beta & \alpha & \beta & 0 \\
0 & \beta & \beta & \alpha & \beta \\
\beta & 0 & 0 & \beta & \alpha
\end{array}\right)
$$

Be careful to make sure your eigenvectors are orthonormal. Compare the results to the eigenvectors you get for the matrix:

$$
\left(\begin{array}{lllll}
\alpha & \beta & 0 & 0 & 0 \\
\beta & \alpha & 0 & 0 & 0 \\
0 & 0 & \alpha & \beta & \beta \\
0 & 0 & \beta & \alpha & \beta \\
0 & 0 & \beta & \beta & \alpha
\end{array}\right)
$$

What differences do you see in the eigenvectors? [Note: if you use Matlab, it will prove useful to write each of these matrices as α times the identity matrix plus β times another matrix. Call this other matrix M. You will then need to convince yourself that the eigenvectors of the full matrix are the same as the eigenvectors of M.]
2. As you have been taught in your earlier chemistry classes, the s and porbitals are not the most appropriate way to think about atomic orbitals in, say, methane. Instead, it is useful to consider sp^{3} hybrid orbitals:

$$
\begin{aligned}
& \psi_{1}(\mathbf{r})=\frac{1}{2}\left[2 s(\mathbf{r})+2 p_{x}(\mathbf{r})+2 p_{y}(\mathbf{r})+2 p_{z}(\mathbf{r})\right] \\
& \psi_{2}(\mathbf{r})=\frac{1}{2}\left[2 s(\mathbf{r})-2 p_{x}(\mathbf{r})-2 p_{y}(\mathbf{r}) \quad 2 p_{z}(\mathbf{r})\right] \\
& \psi_{3}(\mathbf{r})=\frac{1}{2}\left[2 s(\mathbf{r})+2 p_{x}(\mathbf{r})-2 p_{y}(\mathbf{r})-2 p_{z}(\mathbf{r})\right] \\
& \psi_{4}(\mathbf{r})=\frac{1}{2}\left[2 s(\mathbf{r})-2 p_{x}(\mathbf{r})+2 p_{y}(\mathbf{r})-2 p_{z}(\mathbf{r})\right]
\end{aligned}
$$

a. Just as $\left\{2 s, 2 p_{x}, 2 p_{y}, 2 p_{z}\right\}$ are orthonormal, the sp^{3} hybrid orbitals above are also orthonormal. Go one step toward proving this by showing that ψ_{1} is normalized and that ψ_{1} and ψ_{2} are orthogonal to each other. Note that it is possible to do this without computing any integrals.
b. Show that for a hydrogen atom the sp^{3} hybrid orbitals are degenerate with eigenvalue $E_{s p 3}=-3.4 \mathrm{eV}$. Note that it is possible to do this without computing any integrals.
c. The salient difference between the sp^{3} orbitals and the s and p orbitals is that each of the sp^{3} orbitals points in a particular direction, whereas the hydrogenic orbitals are directionless. For ψ_{1} compute the average value of z and show that $\langle\hat{z}\rangle<0$, so that ψ_{1} "points" in the $-z$ direction. Hint: You will want to use reflection symmetry to prove that all but two of the $4 \times 4=16$ integrals are zero.
3. Suppose you have a potential for which the selection rules dictate that there are only three allowed transitions at frequencies $\omega_{\mathrm{A}}, \omega_{\mathrm{B}}$ and ω_{C} respectively. The spectrum for one electron in this potential looks like this:

a. Now, suppose you have two non-interacting electrons in this potential. What will the allowed transitions be? What will the frequencies of these transitions be?
b. Based on your answers to part a., draw the spectrum for two electrons in this potential.
c. Now suppose the electrons interact weakly. Sketch how the electron-electron repulsion will change your spectrum. Justify your sketch noting what changes you expect to see in the selection rules and the transition energies.
4. \square For two electrons, the total z component of the spin angular momentum for the system is

$$
\hat{S}_{z, \text { total }}=\hat{S}_{z 1}+\hat{S}_{z 2}
$$

while the total spin operator is given by:

$$
\hat{S}_{\text {total }}^{2}=\hat{S}_{x, \text { total }}^{2}+\hat{S}_{y, \text { total }}^{2}+\hat{S}_{z, \text { total }}^{2}=\left(\hat{S}_{x 1}+\hat{S}_{x 2}\right)^{2}+\left(\hat{S}_{y 1}+\hat{S}_{y 2}\right)^{2}+\left(\hat{S}_{z 1}+\hat{S}_{z 2}\right)^{2}
$$

a. Show that both

$$
\Psi_{\alpha \beta}=\frac{1}{\sqrt{2}}\left|\begin{array}{ll}
1 s \alpha(1) & 2 s \beta(1) \\
1 s \alpha(2) & 2 s \beta(2)
\end{array}\right| \equiv \frac{1}{\sqrt{2}}(1 s \alpha(1) 2 s \beta(2)-2 s \beta(1) 1 s \alpha(2))
$$

and

$$
\Psi_{\beta \alpha}=\frac{1}{\sqrt{2}}\left|\begin{array}{ll}
1 s \beta(1) & 2 s \alpha(1) \\
1 s \beta(2) & 2 s \alpha(2)
\end{array}\right| \equiv \frac{1}{\sqrt{2}}(1 s \beta(1) 2 s \alpha(2)-2 s \alpha(1) 1 s \beta(2))
$$

are antisymmetric. Show also that $\Psi_{\alpha \beta}$ and $\Psi_{\beta \alpha}$ are eigenfunctions of $\hat{S}_{z, \text { total }}$. What are the eigenvalues in each case?
b. Show that, while $\Psi_{\alpha \beta}$ and $\Psi_{\beta \alpha}$ cannot be written in the form $\Psi_{\text {space }} \Psi_{\text {spin }}$ yet the combinations $\Psi_{\alpha \beta} \pm \Psi_{\beta \alpha}$ can both be cast in the form $\Psi_{\text {space }} \Psi_{\text {spin }}$.
c. Verify that the total spin operator can be re-written in terms of raising and lowering operators:

$$
\hat{S}_{\text {total }}^{2}=\hat{S}_{1}^{2}+\hat{S}_{2}^{2}+2 \hat{S}_{1 z} \hat{S}_{2 z}+\left(\hat{S}_{1+} \hat{S}_{2-}+\hat{S}_{1-} \hat{S}_{2+}\right)
$$

d. Show that neither $\Psi_{\alpha \beta}$ nor $\Psi_{\beta \alpha}$ is an eigenfunction of $\hat{S}_{\text {total }}^{2}$. That is to say, show that neither of these wavefunctions is a total spin eigenstate.
e. Finally, show that the combinations $\Psi_{\alpha \beta} \pm \Psi_{\beta \alpha}$ are eigenfunctions of both $\hat{S}_{z, \text { total }}$ and $\hat{S}_{\text {total }}^{2}$.
f. Note that $\Psi_{\alpha \beta}, \Psi_{\beta \alpha}$ and $\Psi_{\alpha \beta} \pm \Psi_{\beta \alpha}$ are all degenerate states within the noninteracting electron picture. Comment on why your work above shows that $\Psi_{\alpha \beta} \pm \Psi_{\beta \alpha}$ are more realistic eigenstates of the Hamiltonian.
5. $/ \square$ Consider a universe where the electron has spin $5 / 2$ instead of spin $1 / 2$.
a. Draw the periodic table (up to Halfnium) in this alternate universe.
b. What elements would be "noble gases"? Which would be alkali earth elements? What elements would be in the same period as carbon?
c. What would the bond order of He_{2} be in this universe? What about O_{2} ?
d. What would the equivalent of the octet rule be in this alternate universe? [Note: you could spend a lot of time answering this last question. It is intended to be fun. When it stops being fun, your answer is long enough.]
6. The following concern the independent particle model. You may find the following set of Coulomb and exchange integrals useful (energies in eV) :

$$
\begin{array}{cccc}
J_{1 s 1 s}=17.0 Z & J_{1 s 2 s}=4.8 Z & K_{1 s 2 s}=0.9 Z & J_{2 s 2 s}=3.5 Z \\
J_{1 s 2 p}=6.6 Z & K_{1 s 2 p}=0.5 Z & J_{2 s 2 p}=4.4 Z & K_{2 s 2 p}=0.8 Z \\
J_{2 p_{i} 2 p_{p}}=3.9 Z & J_{2 p_{i} 2 p_{k}}=3.5 Z & K_{2 p_{i} 2 p_{k}}=0.2 Z & (\mathrm{i} \neq \mathrm{k})
\end{array}
$$

a. Using the independent particle model discussed in class, what is the energy difference between the $1 \mathrm{~s}^{2} 2 \mathrm{p}_{\mathrm{x}}{ }^{2}$ configuration and the $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2}$ configuration? How do you justify your result?
b. What is the energy difference between the ground state of Lithium and the spin polarized $1 \mathrm{~s}^{\uparrow} 2 \mathrm{~s}^{\uparrow} 2 \mathrm{p}_{\mathrm{z}} \uparrow$ state? Is this energy about the size you expected?
c. Use the IPM to compute the ionization potential of B : $I P=E(B+)-E(B)$. Compare your boron result with the ionization potential of Lithium within the IPM. Does this agree with periodic trends?
d. Finally, compare the ionization potentials computed in part c. with the experimental results $[\operatorname{IP}(\mathrm{Li})=5.4 \mathrm{eV}, \operatorname{IP}(\mathrm{B})=8.3 \mathrm{eV}]$ and the answer you would have gotten if you had assumed the electrons do not interact.
e. Within the IPM, what is the energy difference between a closed shell $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}_{\mathrm{x}}^{2}$ configuration and a high spin $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{\uparrow} 2 \mathrm{p}_{\mathrm{x}}{ }^{\uparrow} 2 \mathrm{p}_{\mathrm{y}}{ }^{\uparrow} 2 \mathrm{p}_{\mathrm{z}}{ }^{\uparrow}$ configuration for carbon? Does this agree with your intuition?

MIT OpenCourseWare
http://ocw.mit.edu

5.61 Physical Chemistry

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

