MASSACHUSETTS INSTITUTE OF TECHNOLOGY

5.61 Physical Chemistry Fall, 2013

Professors Robert W. Field and Troy Van Voorhis

FIFTY MINUTE EXAMINATION II

Write your name on this cover page. You may use a calculator. This exam consists of a cover page, 3 questions, each followed by a blank page for calculations, and a page of useful equations, a total of 13 pages. Please count them now!

Question	Possible Score	My Score
Ι	40	
II	40	
III	20	
TOTAL	100	

Name: _____

I. Short Answer Questions

A. (20 points) Rotational Spectrum of HCl

 $m_H = 1.0078 \text{ g/mol}$ $m_{35_{\text{Cl}}} = 34.9689 \text{ g/mol}$ $m_{37_{\text{Cl}}} = 36.9659 \text{ g/mol}$ $\mu(\text{H}^{35}\text{Cl}) = 0.97957 \text{ g/mol}$ $\mu(\text{H}^{37}\text{Cl}) = 0.98105 \text{ g/mol}$ $B_e(\text{H}^{35}\text{Cl}) = 10.593416 \text{ cm}^{-1}$ $\alpha_e(\text{H}^{35}\text{Cl}) = 0.3072 \text{ cm}^{-1}$

- (i) (4 points) What physical property is required for the rotational spectrum of HCl to be observable?
- (ii) (4 points) What is the B_e value for H³⁷Cl?
- (iii) (7 points) What are the transition frequencies (in cm⁻¹ units) of the $J = 1 \leftarrow J = 0$ transitions in H³⁵Cl and H³⁷Cl?

(iv) (5 points) What is the difference (in cm⁻¹ units) between the $J = 1 \leftarrow J = 0$ transition frequencies in H³⁵Cl for v = 0 and v = 1? The rotational constants depend on v, as specified by the equation

$$B(v) = B_e - \alpha_e(v+1/2).$$

(40 Points)

B. (12points) Harmonic Oscillator Plus Barrier or Well

$$\widehat{H}^{(0)} = -\frac{\hbar^2}{2\mu} \frac{d^2}{dx^2} + \frac{1}{2}kx^2$$
$$\widehat{H}^{(1)} = V_0 \qquad -x_0 \le x \le x_0, \quad V_0 = 0 \quad |x| > x_0$$
$$E^{(0)}(v) = \hbar\omega(v + 1/2)$$

- (i) (6 points) Does the second-order perturbation theory correction term, $E_v^{(2)}$, depend on the sign of V_0 ?
- (ii) (6 points) Does perturbation theory predict that the energy levels of a harmonic oscillator plus a barrier $(V_0 > 0)$ are different from those of a harmonic oscillator plus a well $(V_0 < 0)$? Explain your answer.

C. (8 points) Rigid Rotor

For a freely-evolving rigid rotor (\hat{H} is time-independent).

- (i) (4 points) You find $\langle \hat{J}^2 \rangle_{t=0} = \hbar^2 3.000$. What does this imply about $\Psi(\theta, \phi, t=0)$?
- (ii) (4 points) Will $\langle \hat{J}^2 \rangle_t$ be time-dependent? Explain your answer.

Blank page for calculations

(40 Points)

II. The Two–Level Problem: Bright and Dark States Consider the 2–level problem where

$$E_1^{(0)} = A + \Delta/2 \qquad (\Delta > 0)$$

$$E_2^{(0)} = A - \Delta/2$$

$$H_{12}^{(1)} = V \qquad (|V| \ll \Delta)$$

$$H_{11}^{(1)} = H_{22}^{(1)} = 0.$$

The eigen–energies and eigen–functions are

$$E_{\pm} = A \pm (\Delta/2 + V^2/\Delta)$$

$$\star \qquad \psi_{+} = [1 - (V/\Delta)^2]^{1/2}\psi_1 + (V/\Delta)\psi_2$$

$$\star \qquad \psi_{-} = -(V/\Delta)\psi_1 + [1 - (V/\Delta)^2]^{1/2}\psi_2$$

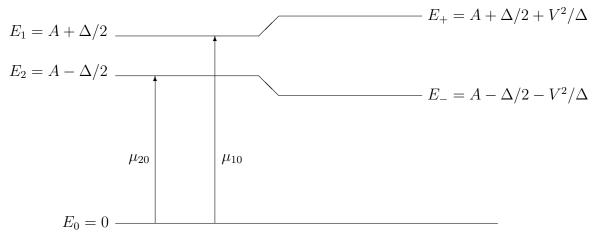
$$\psi_1 \text{ and } \psi_2 \text{ are normalized and orthogonal.}$$

The zero–order wave functions, expressed in terms of the eigenfunctions are

$$\star \star \qquad \psi_1^{(0)} = [1 - (V/\Delta)^2]^{1/2} \psi_+ - (V/\Delta) \psi_- \star \star \qquad \psi_2^{(0)} = (V/\Delta) \psi_+ + [1 - (V/\Delta)^2]^{1/2} \psi_-$$

A. (10 points) Show that ψ_+ and ψ_- in the \star equations are normalized and orthogonal.

B. (10 points) Suppose that a laser is used to excite molecules from level 0 (at $E_0 = 0$) to the two-level system

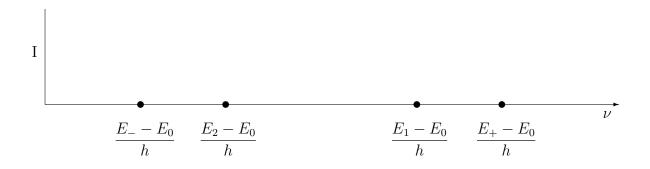


```
where \mu_{10} \neq 0 and \mu_{20} = 0.
```

Consider an experiment in which the total fluorescence intensity is recorded as the frequency of a long–pulse excitation laser is scanned through the frequency region that includes the $\frac{E_+-E_0}{h}$ and $\frac{E_--E_0}{h}$ eigenstate to eigenstate transition frequencies. This is called a "fluorescence excitation spectrum". The fluorescence intensity from the E_+ level is proportional to

$$I_{+0} \propto |\mu_{+0}|^2 \equiv \left| \int dx \psi_+^\star \hat{\mu} \psi_0 \right|^2.$$

Sketch the observed fluorescence excitation spectrum and specify the relative intensities of the transitions in the spectrum.



"dark"?

- C. (20 points) Now consider short–pulse excitation of the two–level system from level E₀.
 (i) (3 points) Which zero–order level (level 1 or level 2) is "bright" and which is
 - (ii) (3 points) Based on your answer to part (i), what is $\Psi(x, t = 0)$?
 - (iii) (4 points) Write an expression for $\Psi(x,t)$, following the prescription that the bright state produced at t = 0 must be expressed as a linear combination of the eigenstates, each with a phase factor $e^{-iE_{\pm}t/\hbar}$.
 - (iv) (10 points) The observed fluorescence intensity will exhibit quantum beats where

$$I(t) \propto \left| \int dx \Psi^{\star}(x,t) \hat{\mu} \psi_0 \right|^2.$$

Describe the features of this quantum beating signal.

- * Does the fluorescence intensity at t = 0, I(t = 0), correspond to a maximum or minimum?
- \star Are the oscillations observed at frequency

$$\frac{E_1 - E_2}{h} \qquad \text{or} \qquad \frac{E_+ - E_-}{h}$$

or both?

* What is the ratio of the intensity at the first minimum of I(t) to that at the first maximum, I_{\min}/I_{\max} ?

Blank page for calculations

III. VIBRATIONAL TRANSITION INTENSITIES AND ANHARMONIC INTERACTIONS

The intensities of vibrational absorption transitions are proportional to

$$I_{v',v''} \propto \left| \int dQ \psi_{v'}(Q) \hat{\mu}(\widehat{Q}) \psi_{v''}(Q) \right|^2$$

where

$$\hat{\mu}(\widehat{Q}) = \mu_0 + \frac{d\mu}{dQ}\widehat{Q} + \frac{1}{2}\frac{d^2\mu}{dQ^2}\widehat{Q}^2$$

where, for a harmonic oscillator, the displacement from equilibrium (called \hat{x} in the lecture notes)

$$\widehat{Q} = \left(\frac{\hbar}{2\mu\omega}\right)^{1/2} \left[\hat{\mathbf{a}} + \hat{\mathbf{a}}^{\dagger}\right]$$

and, for a harmonic oscillator

$$\int dQ\psi_{v-1}\hat{\mathbf{a}}\psi_v = v^{1/2}$$
$$\int dQ\psi_{v+1}\hat{\mathbf{a}}^{\dagger}\psi_v = (v+1)^{1/2}.$$

A. (5 points) What is the ratio of transition probabilities for the $v' = 1 \leftarrow v'' = 0$ fundamental transition to that for the $v' = 2 \leftarrow v'' = 1$ hot band?

- Page 9
- **B.** (15 points) In OCS there are 3 normal modes and $\frac{\partial \mu}{\partial Q_i} \neq 0$ for normal modes numbered i = 1, 2, and 3. This means that there are allowed fundamental transitions $(1,0,0) \leftarrow (0,0,0), (0,1,0) \leftarrow (0,0,0)$, and $(0,0,1) \leftarrow (0,0,0)$ where each zero-order vibrational level is denoted by (v_1, v_2, v_3) . Suppose that there is an important anharmonic resonance, $k_{122}\hat{Q}_1\hat{Q}_2^2$.
 - (i) (3 points) What are the selection rules for anharmonic interactions caused by $k_{122}\hat{Q}_1\hat{Q}_2^2$? $\Delta v_1 = \Delta v_2 = \Delta v_3 =$
 - (ii) (3 points) Consider the anharmonic interaction between the $\psi_{(1,0,0)}^{(0)}$ and $\psi_{(0,2,0)}^{(0)}$ zero–order states:

$$V \equiv \int dQ_1 dQ_2 dQ_3 \psi_{(1,0,0)}^{(0)} \widehat{Q}_1 \widehat{Q}_2^2 \psi_{(0,2,0)}^{(0)}$$

$$\Delta \equiv E_{(0,2,0)}^{(0)} - E_{(1,0,0)}^{(0)}$$

$$E_+ - E_- = \Delta + 2V^2 / \Delta$$

$$\psi_{(1,0,0)}^{(0)} = [1 - (V/\Delta)^2]^{1/2} \psi_+ - (V/\Delta) \psi_-$$

$$\psi_{(0,2,0)}^{(0)} = (V/\Delta) \psi_+ + [1 - (V/\Delta)^2]^{1/2} \psi_-$$

$$\psi_+ = [1 - (V/\Delta)^2]^{1/2} \psi_{(1,0,0)}^{(0)} + (V/\Delta) \psi_{(0,2,0)}^{(0)}$$

$$\psi_- = -(V/\Delta) \psi_{(1,0,0)}^{(0)} + [1 - (V/\Delta)^2]^{1/2} \psi_{(0,2,0)}$$

A short infrared pulse excites a coherent superposition of ψ_+ and ψ_- . What is $\Psi(Q_1, Q_2, Q_3, t = 0)$?

(iii) (5 points) The number operator $\hat{N}_i = \hat{\mathbf{a}}_i^{\dagger} \hat{\mathbf{a}}_i$ tells us the number of quanta in the *i*-th zero-order normal mode. What are the expectation values of \hat{N}_1 and \hat{N}_2 at t = 0?

(iv) (4 points) Describe what you expect for the time evolution of $\langle \hat{N}_1 \rangle$ and $\langle \hat{N}_2 \rangle$ for the coherent superposition state excited by the short infrared pulse. Your description can be in words, pictures, or equations.

Blank page for calculations

POSSIBLY USEFUL INFORMATION

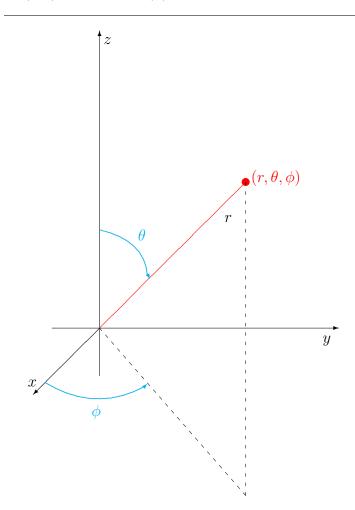
The classical mechanical relationship between x and p is

$$p(x) = [2m(E - V(x))]^{1/2}.$$

For a harmonic oscillator with $V(x) = \frac{1}{2}kx^2$, when x = 0 and $E_v = \hbar\omega(v + 1/2)$

$$p_v(0) = [2\mu\hbar\omega(v+1/2)]^{1/2}.$$

$$\begin{split} \widehat{L}^{2}\psi_{L,M_{L}} &= \hbar^{2}L(L+1)\psi_{L,M_{L}} \\ \widehat{L}_{z}\psi_{L,M_{L}} &= \hbar M_{L}\psi_{L,M_{L}} \\ \widehat{L}_{\pm}\psi_{L,M_{L}} &= \hbar [L(L+1) - M_{L}(M_{L}\pm 1)]^{1/2}\psi_{L,M_{L}\pm 1} \\ E_{n\ell} &= \frac{-\hbar c \Re}{n^{2}} \\ \widehat{H}^{\text{Zeeman}} &= -\frac{\mu_{B}}{\hbar}B_{z}[\widehat{L}_{z}+2\widehat{S}_{z}] \ (\mu_{B} \text{ is the "Bohr magneton" and } B_{z} \text{ is the magnetic field along the } z\text{-axis}) \end{split}$$



5.61 Physical Chemistry Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.