5.61 FIRST HOUR EXAM ANSWERS

Fall, 2013
I. A. Sketch $\psi_{5}^{\star}(x) \psi_{5}(x)$ vs. x, where $\psi_{5}(x)$ is the $n=5$ wavefunction of a particle in a box. Describe, in a few words, each of the essential qualitative features of your sketch.

This is a probability density for $n=5$ of a PIB.
There are $n-1=4$ nodes. The nodes are equally spaced. Each lobe between consecutive nodes is a half-cycle of $\left[\sin \left(\frac{5 \pi x}{a}\right)\right]^{2}$ with maximum height of $(2 / a)$.
B. Sketch $\psi_{5}^{\star}(x) \psi_{5}(x)$ vs. x, where $\psi_{5}(x)$ is the $v=5$ wavefunction of a harmonic oscillator. Describe, in a few words, each of the essential qualitative features of this sketch.

This is a probability density for $v=5$ of a H.O.
There are $v=5$ nodes. One node is at $x=0$. The $2,3,4$ nodes are close together because the classical $p(x)$ function is largest near $x=0$ and $\lambda=h / p$. The 1 and 5 nodes are closer to the turning points at $x_{ \pm}=[2(\hbar \omega 5.5) / k]^{1 / 2}$ than to the 2 and 4 nodes. The outer lobes have the largest maximum height and area, but cannot finish at $\psi_{5}^{\star} \psi_{5}=0$ at $x_{ \pm}[11 \hbar \omega / k]^{1 / 2}$, thus have exponentially decreasing tails in the classically forbidden $E<V(x)$ regions.
C. (i) Sketch $\psi_{1}(x)$ and $\psi_{2}(x)$ for a particle in a box where there is a small and thin barrier in the middle of the box, as shown on this $V(x)$:
The wavefunctions look like this:

The barrier has a negligible effect on the $n=2$ energy and wavefunction. However the $n=1$ wave function tries to go to zero near $x=a / 2$, but it is not allowed to actually cross zero, because that would generate an extra node. In order for $\psi_{1}(x)$ to approach 0 at $x=a / 2$, the E_{1} energy increases until it lies just barely below E_{2}.
(ii) Make a very approximate estimate of $E_{2}-E_{1}$ for this PIB with a thin barrier in the middle. Specify whether $E_{2}-E_{1}$ is smaller than or larger than $3 \frac{h^{2}}{8 m a^{2}}$ which is the energy level spacing between the $n=2$ and $n=1$ energy levels of a PIB without a barrier in the middle.

$$
0<E_{2}-E_{1} \ll \frac{h^{2}}{8 m a^{2}} 3=E_{2}^{(0)}-E_{1}^{(0)} .
$$

D. Consider the half harmonic oscillator, which has $V(x)=\frac{1}{2} k x^{2}$ for $x<0$ and $V(x)=\infty$ for $x \leq 0$. The energy levels of a full harmonic oscillator are

$$
E(v)=\hbar \omega(v+1 / 2)
$$

where $\omega=[k / \mu]^{1 / 2}$. Sketch the $v=0$ and $v=1 \psi_{v}(x)$ of the half harmonic oscillator and say as much as you can about a general energy level formula for the half harmonic oscillator. A little speculation might be a good idea.

For the half-harmonic oscillator, the $v=0$ wave function is the left half of the $v=1$ wave function of the full harmonic oscillator. The $v=2$ wave function is the left half of the $v=3$ wave function of the full HO.

Half HO

Full HO

$$
\begin{array}{ll}
\overline{E(v=0})=\frac{3}{2} \hbar \omega \\
E(v=1)=\frac{7}{2} \hbar \omega
\end{array}>2 \hbar \omega \quad \begin{aligned}
& E(v=0)=\frac{1}{2} \hbar \omega \\
& E(v=1)=\frac{3}{2} \hbar \omega
\end{aligned}>1 \hbar \omega
$$

E. Give exact energy level formulas (expressed in terms of k and μ) for a harmonic oscillator with reduced mass, μ, where
(i) $V(x)=\frac{1}{2} k x^{2}+V_{0}$
$E(v)=V_{0}+\hbar \omega\left(v+\frac{1}{2}\right)$
(ii) $V(x)=\frac{1}{2} k\left(x-x_{0}\right)^{2}$

$$
E(v)=\hbar \omega\left(v+\frac{1}{2}\right)
$$

(iii) $V(x)=\frac{1}{2} k^{\prime} x^{2}$ where $k^{\prime}=4 k$

$$
\begin{gathered}
E(v)=\hbar\left[\frac{k^{\prime}}{\mu}\right]^{1 / 2}\left(v+\frac{1}{2}\right) \\
k^{\prime}=4 k \\
E(v)=\hbar 2\left[\frac{k}{\mu}\right]^{1 / 2}\left(v+\frac{1}{2}\right)=2 \hbar \omega(v+1 / 2)
\end{gathered}
$$

II. PROMISE KEPT: FREE PARTICLE

$$
\begin{gathered}
\widehat{H}=\frac{\hbar}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V_{0} \\
\psi(x)=a e^{i k x}+b e^{-i k x}
\end{gathered}
$$

A. Is $\psi(x)$ an eigenfunction of \widehat{H} ? If so, what is the eigenvalue of \widehat{H}, expressed in terms of \hbar, m, V_{0}, and k ?

$$
\begin{aligned}
\widehat{H} \psi & =-\frac{\hbar^{2}}{2 m}\left[(i k)^{2} a e^{i k x}+(-i k)^{2} b e^{-i k x}\right] \\
& =\frac{\hbar^{2} k^{2}}{2 m}\left[a e^{i k x}+b e^{-i k x}\right]
\end{aligned}
$$

ψ is an eigenfunction of \widehat{H} with eigenvalue $\frac{\hbar^{2} k^{2}}{2 m}$.
B. Is $\psi(x)$ an eigenfunction of \hat{p} ? Your answer must include an evaluation of $\hat{p} \psi(x)$.

$$
\begin{aligned}
\hat{p} \psi & =-i \hbar\left[(i k) a e^{i k x}+(-i k) b e^{-i k x}\right] \\
& =\hbar k\left[a e^{i k x}-b e^{-i k x}\right]
\end{aligned}
$$

ψ is not an eigenfunction of \hat{p}.
C. Write a complete expression for the expectation value of \hat{p}, without evaluating any of the integrals present in $\langle\hat{p}\rangle$. see answer in part D.
D. Taking advantage of the fact that

$$
\int_{-\infty}^{\infty} d x e^{i c x}=0
$$

compute $\langle\hat{p}\rangle$, the expectation value of \hat{p}.

$$
\begin{aligned}
\langle\hat{p}\rangle & =\frac{\int d x \psi^{\star} \hat{p} \psi}{\int d x \psi^{\star} \psi} \\
& =\frac{\int d x \hbar k\left[a^{\star} e^{-i k x}+b^{\star} e^{i k x}\right]\left[a e^{i k x}-b e^{-i k x}\right]}{\int d x\left[a^{\star} e^{-i k x}+b^{\star} e^{i k x}\right]\left[a e^{i k x}+b e^{-i k x}\right]} \\
\langle\hat{p}\rangle & =\frac{\hbar k \int d x\left[|a|^{2}-|b|^{2}\right]}{\int d x\left[|a|^{2}+|b|^{2}\right]} \\
& =\hbar k \frac{|a|^{2}-|b|^{2}}{|a|^{2}+|b|^{2}}
\end{aligned}
$$

E. Suppose you perform a "click-click" experiment on this $\psi(x)$ where $a=-0.632$ and $b=0.775$. One particle detector is located at $x=+\infty$ and another is located at $x=-\infty$. Let's say you do 100 experiments. What would be the fraction of detection events at the $x=+\infty$ detector?
The $x=+\infty$ sees a particle at

$$
f_{+}=\frac{|a|^{2}}{|a|^{2}+|b|^{2}}=\frac{0.40}{0.40+0.60}=40 \% \text { of the time }
$$

F. What is the expectation value of \widehat{H} ?

In part A. we found that

$$
\begin{aligned}
\widehat{H} \psi(x) & =\frac{\hbar^{2} k^{2}}{2 m} \psi(x) \\
\langle\widehat{H}\rangle=\frac{\int d x \psi^{\star} \widehat{H} \psi}{\int d x \psi^{\star} \psi} & =\frac{\frac{\hbar^{2} k^{2}}{2 m} \int d x \psi^{\star} \psi}{\int d x \psi^{\star} \psi}=\frac{\hbar^{2} k^{2}}{2 m}
\end{aligned}
$$

If ψ is an eigenstate of the measurement operator, every measurement yields the eigenvalue of ψ. The expectation value is the eigenvalue!

III. â AND \hat{a}^{\dagger} FOR HARMONIC OSCILLATOR

$$
\begin{aligned}
\hat{\mathbf{a}} \psi_{v} & =v^{1 / 2} \psi_{v-1} \\
\hat{\mathbf{a}}^{\dagger} \psi_{v} & =(v+1)^{1 / 2} \psi_{v+1} \\
\widehat{N} \psi_{v} & =v \psi_{v} \quad \text { where } \quad \widehat{N}=\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}}
\end{aligned}
$$

A. Show that $\left[\hat{\mathbf{a}}^{\dagger}, \hat{\mathbf{a}}\right]$ by applying this commutator to ψ_{v}.

$$
\begin{aligned}
{\left[\hat{\mathbf{a}}^{\dagger}, \hat{\mathbf{a}}\right] } & =\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}}-\hat{\mathbf{a}} \hat{\mathbf{a}}^{\dagger} \\
{\left[\hat{\mathbf{a}}^{\dagger}, \hat{\mathbf{a}}^{\prime}\right] \psi_{v} } & =\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} \psi_{v}-\hat{\mathbf{a}} \hat{a}^{\dagger} \psi_{v} \\
& =\hat{\mathbf{a}}^{\dagger} v^{1 / 2} \psi_{v-1}-\hat{\mathbf{a}}(v+1)^{1 / 2} \psi_{v+1} \\
& =v^{1 / 2} v^{1 / 2} \psi_{v}-(v+1)^{1 / 2}(v+1)^{1 / 2} \psi_{v} \\
& =[v-(v+1)] \psi_{v}=(-1) \psi_{v} \\
{\left[\hat{\mathbf{a}}^{\dagger}, \hat{\mathbf{a}}\right] } & =-1
\end{aligned}
$$

B. Evaluate the following expressions (it is not necessary to explicitly multiply out all of the factors of v).
(i) $\left(\hat{\mathbf{a}}^{\dagger}\right)^{2}(\hat{\mathbf{a}})^{5} \psi_{3}$
$\left(\hat{\mathbf{a}}^{\dagger}\right)^{2}(\hat{\mathbf{a}})^{5} \psi_{3}=0$ because $\hat{\mathbf{a}}^{5} \psi_{3}=\hat{\mathbf{a}}^{2} \psi_{0}(3 \cdot 2 \cdot 1)^{1 / 2}$ but $\hat{\mathbf{a}} \psi_{0}=0$.
(ii) $(\hat{\mathbf{a}})^{5}\left(\hat{\mathbf{a}}^{\dagger}\right)^{2} \psi_{3}$
$(\hat{\mathbf{a}})^{5}\left(\hat{\mathbf{a}}^{\dagger}\right)^{2}$ has selection rule $\Delta v=-3(\hat{\mathbf{a}})^{5}\left(\hat{\mathbf{a}}^{\dagger}\right)^{2} \psi_{3}=(1 \cdot 2 \cdot 3 \cdot 4 \cdot 5)^{1 / 2}(4 \cdot 5)^{1 / 2} \psi_{0}$.
(iii) $\frac{\int d x \psi_{3}\left(\hat{\mathbf{a}}^{\dagger}\right)^{3} \psi_{0}}{\int d x \psi_{3}\left(\hat{\mathbf{a}}^{\dagger}\right)^{3} \psi_{0}=(1 \cdot 2 \cdot 3)^{1 / 2} .}$
(iv) What is the selection rule for non-zero integrals of the following operator product $\left(\hat{\mathbf{a}}^{\dagger}\right)^{2}(\hat{\mathbf{a}})^{5}\left(\hat{\mathbf{a}}^{\dagger}\right)^{4}$?
$\Delta v=2+4-5=+1$.
(v) $\left(\hat{\mathbf{a}}+\hat{\mathbf{a}}^{\dagger}\right)^{2}=\hat{\mathbf{a}}^{2}+\hat{\mathbf{a}}^{\mathbf{a}^{\dagger}}+\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}}+\hat{\mathbf{a}}^{\dagger 2}$. Simplify using $\hat{\mathbf{a}}^{2}+\hat{\mathbf{a}}^{\dagger 2}$ to yield an expression containing $\hat{\mathbf{a}}^{2}+\hat{\mathbf{a}}^{\dagger 2}+$ terms that involve $\widehat{N}=\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}}$ and a constant.

$$
\begin{aligned}
\left(\hat{\mathbf{a}}+\hat{\mathbf{a}}^{\dagger}\right)^{2} & =\hat{\mathbf{a}}^{2}+\hat{\mathbf{a}}^{\dagger 2}+\hat{\mathbf{a}} \hat{\mathbf{a}}^{\dagger}+\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} \\
\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}}^{\dagger} & =\left[\hat{\mathbf{a}}, \hat{\mathbf{a}}^{\dagger}\right]+\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}}=1+\hat{N} \\
\left(\hat{\mathbf{a}}+\hat{\mathbf{a}}^{\dagger}\right)^{2} & =\hat{\mathbf{a}}^{2}+\hat{\mathbf{a}}^{\dagger 2}+2 \hat{N}+1
\end{aligned}
$$

IV. TIME-DEPENDENT WAVE EQUATION AND PIB SUPERPOSITION

For the harmonic oscillator

$$
\begin{aligned}
\hat{x} & =\left(\frac{\hbar}{2 \mu \omega}\right)^{1 / 2}\left(\hat{\mathbf{a}}^{\dagger}+\hat{\mathbf{a}}\right) \\
\hat{p} & =\left(\frac{\hbar \mu \omega}{2}\right)^{1 / 2} i\left(\hat{\mathbf{a}}^{\dagger}-\hat{\mathbf{a}}\right) \\
\widehat{N} & =\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} \\
\delta_{i j} & =\int d x \psi_{i}^{\star}(x) \psi_{j}, \text { which means orthonormal }\left\{\psi_{n}\right\} \\
\widehat{H} \psi_{n}(x) & =E_{n} \psi_{n} \text { which means eigenvalues }\left\{E_{n}\right\} \\
E_{n} & =\hbar \omega\left(n+\frac{1}{2}\right)
\end{aligned}
$$

Consider the time-dependent state

$$
\begin{aligned}
\Psi(x, t) & =2^{1 / 2}\left[e^{-i E_{0} t / \hbar} \psi_{0}(x)+e^{-i E_{1} t / \hbar} \psi_{1}(x)\right] \\
& =2^{1 / 2} e^{-i E_{0} t / \hbar}\left[\psi_{0}(x)+e^{-i \hbar \omega t / \hbar} \psi_{1}\right]
\end{aligned}
$$

A. Sketch $\Psi(x, 0)$ and $\Psi\left(x, t=\frac{\pi}{\omega}\right)$

$\Psi(x, 0)=\psi_{0}(x)+\psi_{1}(x)$

$$
\Psi\left(x, \frac{\pi}{\omega}\right)=\psi_{0}(x)-\psi_{1}(x)
$$

B. Compute $\int d x \Psi^{\star}(x, t) \widehat{N} \Psi(x, t)$.

$$
\begin{aligned}
\int d x \Psi^{\star}(x, t) \widehat{N} \Psi(x, t) & =\frac{1}{2} \int d x\left(\psi_{0}^{\star}+e^{i \omega t} \psi_{1}^{\star}\right) \widehat{N}\left(\psi_{0}+e^{-i \omega \hbar} \psi_{1}\right) \\
& =\frac{1}{2} \int d x\left(\psi_{0}^{\star}+e^{i \omega t} \psi_{1}^{\star}\right)\left(0+e^{-i \omega t} \psi_{1}\right) \\
& =\frac{1}{2}
\end{aligned}
$$

C. Compute $\langle\widehat{H}\rangle=\int d x \Psi^{\star}(x, t) \widehat{H} \Psi(x, t)$ and comment on the relationship of $\langle\widehat{N}\rangle$ to $\langle\hat{H}\rangle$.

$$
\begin{aligned}
\widehat{H}= & \hbar \omega\left(\widehat{N}+\frac{1}{2}\right) \\
\langle\widehat{H}\rangle= & \hbar \omega\left[\langle\widehat{N}\rangle+\left\langle\frac{1}{2}\right\rangle\right] \\
\left\langle\frac{1}{2}\right\rangle= & \frac{1}{2} \text { because } \Psi \text { is normalized to } 1 . \\
& \langle\widehat{H}\rangle=\hbar \omega\left[\frac{1}{2}+\frac{1}{2}\right]=\hbar \omega
\end{aligned}
$$

This is not surprising because the average E in $\Psi(x, t)$ is

$$
\frac{E_{v=0}+E_{v=1}}{2}=\hbar \omega
$$

and E is conserved.
D. Compute $\langle\hat{x}\rangle=\int d x \Psi^{\star}(x, t) \hat{x} \Psi(x, t)$.

$$
\begin{aligned}
\hat{x} & =\left(\frac{\hbar}{2 \mu \omega}\right)^{1 / 2}\left(\hat{\mathbf{a}}^{\dagger}+\hat{\mathbf{a}}\right) \\
\hat{x} \Psi(x, t) & =2^{-1 / 2} e^{-i E_{0} t / \hbar}\left(\frac{\hbar}{2 \mu \omega}\right)^{1 / 2}\left(\hat{\mathbf{a}}^{\dagger}+\hat{\mathbf{a}}\right)\left(\psi_{0}+e^{-i \omega t} \psi_{1}\right) \\
& =2^{-1 / 2} e^{-i \omega t / 2}\left(\frac{\hbar}{2 \mu \omega}\right)^{1 / 2}\left(\psi_{1}+2^{1 / 2} e^{-i \omega t} \psi_{2}+e^{-i \omega t} \psi_{0}\right) \\
\Psi^{\star} \hat{x} \Psi & =\frac{1}{2}\left(\frac{\hbar}{2 \mu \omega}\right)^{1 / 2}\left(\psi_{0}^{\star}+e^{i \omega t} \psi_{1}^{\star}\right)\left(e^{-i \omega t} \psi_{0}+\psi_{1}+2^{1 / 2} e^{-i \omega t} \psi_{2}\right) \\
\langle\hat{x}\rangle \int d x \Psi^{\star} \hat{x} \Psi & =\frac{1}{2}\left(\frac{\hbar}{2 \mu \omega}\right)^{1 / 2}\left(e^{-i \omega t}+e^{i \omega t}+0\right) \\
& =\frac{1}{2}\left(\frac{\hbar}{2 \mu \omega}\right)^{1 / 2} 2 \cos \omega t
\end{aligned}
$$

This reveals a phase ambiguity. The picture of $\Psi^{\star}(x, 0) \Psi(x, 0)$ in Part IV.A. suggests that $\langle x\rangle_{t}$ starts negative and oscillates cosinusoidally. But the calculation using $\hat{\mathbf{a}}, \hat{\mathbf{a}}^{\dagger}$ shows that $\langle x\rangle_{t}$ starts positive at $t=0$. This means that the implicit phase convention for $\psi_{v}(x)$ is outermost lobe positive not innermost lobe positive as assumed in part \mathbf{A}.
E. Compute $\left\langle\hat{x}^{2}\right\rangle$.

The selection rule for \hat{x}^{2} is $\Delta v= \pm 2,0$.
Since $\Psi(x, t)$ contains only ψ_{0} and ψ_{1}, there will be no $\Delta v= \pm 2$ integrals. We only need the $\Delta v=0$ part of \hat{x}^{2}.

$$
\begin{aligned}
\hat{x}^{2} & =\left(\frac{\hbar}{2 \mu \omega}\right)\left(\hat{\mathbf{a}}+\hat{\mathbf{a}}^{\dagger}\right)^{2} \\
& =\left(\frac{\hbar}{2 \mu \omega}\right)\left(\hat{\mathbf{a}}^{2}+\hat{\mathbf{a}}^{\dagger 2}+2 \widehat{N}+1\right)
\end{aligned}
$$

So we want $\frac{\hbar}{2 \mu \omega}\langle 2 \widehat{N}+1\rangle$.

$$
\begin{aligned}
\langle 2 \widehat{N}+1\rangle & =2\langle\widehat{H}\rangle / \hbar \omega \\
\left\langle\hat{x}^{2}\right\rangle & =\left(\frac{\hbar}{2 \mu \omega}\right)(2)=2 \frac{\hbar}{2 \mu \omega} .
\end{aligned}
$$

F. Based on your answer to part \mathbf{E}, evaluate $\langle\widehat{V}(x)\rangle$.

$$
\begin{aligned}
\widehat{V} & =\frac{1}{2} k\left\langle\hat{x}^{2}\right\rangle \\
& =\frac{1}{2} k \frac{\hbar}{\mu \omega}=\frac{1}{2} \hbar \omega \\
\text { because } \omega & =(k / \mu)^{1 / 2} .
\end{aligned}
$$

G. Based on your answer to parts \mathbf{C} and \mathbf{F}, evaluate $\langle\widehat{T}\rangle$.

From part C. $\langle\widehat{H}\rangle=\hbar \omega$.
From part F. $\langle\widehat{V}\rangle=\hbar \omega / 2$.

$$
\begin{aligned}
\widehat{T} & =\widehat{H}-\widehat{V} \\
\langle\widehat{T}\rangle & =\langle\widehat{H}\rangle-\langle\widehat{V}\rangle=\hbar \omega-\frac{\hbar \omega}{2}=\frac{\hbar \omega}{2} .
\end{aligned}
$$

Why are $\langle\widehat{T}\rangle$ and $\langle\widehat{V}\rangle$ independent of t ? Because $\Psi(x, t)$ contains only ψ_{0} and ψ_{1} and the motion of $\left\langle\hat{x}^{2}\right\rangle$ or $\left\langle\hat{p}^{2}\right\rangle$ requires ψ_{v} in $\Psi(x, t)$ differing in v by ± 2.

MIT OpenCourseWare
http://ocw.mit.edu

5.61 Physical Chemistry

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

