MASSACHUSETTS INSTITUTE OF TECHNOLOGY

5.61 Physical Chemistry

Fall, 2013
Professors Robert W. Field and Troy Van Voorhis
FIFTY MINUTE EXAMINATION II ANSWER KEY

I. Short Answer Questions

(40 Points)
A. (20 points) Rotational Spectrum of HCl

$$
\begin{aligned}
m_{H} & =1.0078 \mathrm{~g} / \mathrm{mol} \\
m_{35_{\mathrm{Cl}}} & =34.9689 \mathrm{~g} / \mathrm{mol} \\
m_{37_{\mathrm{Cl}}} & =36.9659 \mathrm{~g} / \mathrm{mol} \\
\mu\left(\mathrm{H}^{35} \mathrm{Cl}\right) & =0.97957 \mathrm{~g} / \mathrm{mol} \\
\mu\left(\mathrm{H}^{37} \mathrm{Cl}\right) & =0.98105 \mathrm{~g} / \mathrm{mol} \\
\mathrm{~B}_{e}\left(\mathrm{H}^{35} \mathrm{Cl}\right) & =10.593416 \mathrm{~cm}^{-1} \\
\alpha_{e}\left(\mathrm{H}^{35} \mathrm{Cl}\right) & =0.3072 \mathrm{~cm}^{-1}
\end{aligned}
$$

(i) (4 points) What physical property is required for the rotational spectrum of HCl to be observable?
A permanent electric dipole moment is required for observation of a pure rotation (microwave) spectrum. [A dipole derivative, $\frac{d \mu}{d R}$, is required for observation of a vibrational spectrum.]
(ii) (4 points) What is the B_{e} value for $\mathrm{H}^{37} \mathrm{Cl}$?

The B_{e} value for $\mathrm{H}^{37} \mathrm{Cl}$ is

$$
\begin{aligned}
B_{e}\left(\mathrm{H}^{37} \mathrm{Cl}\right) & =\frac{\mu\left(\mathrm{H}^{35} \mathrm{Cl}\right)}{\mu\left(\mathrm{H}^{37} \mathrm{Cl}\right)} B_{e}\left(\mathrm{H}^{35} \mathrm{Cl}\right) \\
& =\frac{0.97957}{0.98105} 10.593416 \\
& =10.57743 \mathrm{~cm}^{-1}
\end{aligned}
$$

(iii) (7 points) What are the transition frequencies (in cm^{-1} units) of the $J=1 \leftarrow J=0$ transitions in $\mathrm{H}^{35} \mathrm{Cl}$ and $\mathrm{H}^{37} \mathrm{Cl}$?
The $J=1 \leftarrow J=0$ transitions are at $\sim 2 \mathrm{~B}_{e}$

$$
\begin{array}{lr}
\mathrm{H}^{35} \mathrm{Cl} & 2(10.593416)=21.186832 \mathrm{~cm}^{-1} \\
\mathrm{H}^{37} \mathrm{Cl} & 2(10.57743)=21.15486 \mathrm{~cm}^{-1}
\end{array}
$$

+2 extra credit if the calculation was for the $v=0$ level where $2 \alpha_{e}$ was subtracted from the values above.
+1 additional credit if concern was expressed for the difference between α_{e} for $\mathrm{H}^{35} \mathrm{Cl}$ vs. $\mathrm{H}^{37} \mathrm{Cl}$.
(iv) (5 points) What is the difference (in cm^{-1} units) between the $J=1 \leftarrow J=0$ transition frequencies in $\mathrm{H}^{35} \mathrm{Cl}$ for $v=0$ and $v=1$? The rotational constants depend on v, as specified by the equation

$$
B(v)=B_{e}-\alpha_{e}(v+1 / 2) .
$$

For $\mathrm{H}^{35} \mathrm{Cl}$ the $J=1-0$ transitions are

$$
\text { for } \begin{array}{rlrl}
v & =0 & 2\left[10.593416-\frac{1}{2}(0.3072)\right] \mathrm{cm}^{-1} \\
v & =1 & 2\left[10.593416-\frac{3}{2}(0.3072)\right] \mathrm{cm}^{-1}
\end{array}
$$

Full credit given for

$$
\nu_{v=0}-\nu_{v=1}=2(0.3072)=0.6144 \mathrm{~cm}^{-1} .
$$

B. (12points) Harmonic Oscillator Plus Barrier or Well

$$
\begin{aligned}
\widehat{H}^{(0)} & =-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d x^{2}}+\frac{1}{2} k x^{2} \\
\widehat{H}^{(1)} & =V_{0} \quad-x_{0} \leq x \leq x_{0}, \quad V_{0}=0 \quad|x|>x_{0} \\
E^{(0)}(v) & =\hbar \omega(v+1 / 2)
\end{aligned}
$$

(i) (6 points) Does the second-order perturbation theory correction term, $E_{v}^{(2)}$, depend on the sign of V_{0} ?
The value of $E_{v}^{(2)}$ does not depend on the sign of V_{0} because $E_{v}^{(2)} \propto V_{0}^{2}$.
(ii) (6 points) Does perturbation theory predict that the energy levels of a harmonic oscillator plus a barrier $\left(V_{0}>0\right)$ are different from those of a harmonic oscillator plus a well $\left(V_{0}<0\right)$? Explain your answer.
YES perturbation theory does predict a very substantial difference between the energy levels for $V_{0}>0$ vs. $V_{0}<0$ because

$$
E_{v}^{(1)}=\int_{-x_{0}}^{x_{0}} d \tau \psi_{v}^{\star} V_{0} \psi_{v} \propto 2 x_{0} V_{0}
$$

C. (8 points) Rigid Rotor

For a freely-evolving rigid rotor (\widehat{H} is time-independent).
(i) (4 points) You find $\left\langle\hat{J}^{2}\right\rangle_{t=0}=\hbar^{2} 3.000$. What does this imply about $\Psi(\theta, \phi, t=0)$?

If $\left\langle J^{2}\right\rangle_{t=0}=\hbar^{2} 3.000$ the system cannot be in an eigenstate of \widehat{J}^{2}. The eigenvalues are

J	$\int d \tau \psi^{\star} \widehat{J}^{2} \psi$
0	$0 \hbar^{2}$
1	$2 \hbar^{2}$
2	$6 \hbar^{2}$

One way to achieve $\left\langle J^{2}\right\rangle_{t=0}=\hbar^{2} 3.00$ is for

$$
\psi(\theta, \phi)=\left(\frac{3}{4}\right)^{1 / 2} \psi_{2, M}+\left(\frac{1}{4}\right)^{1 / 2} \psi_{3, M}
$$

because

$$
\left(\frac{3}{4}\right) 2+\left(\frac{1}{4}\right) 6=3
$$

There are many other ways to arrive at this value of $\left\langle J^{2}\right\rangle$.
(ii) (4 points) Will $\left\langle\hat{J}^{2}\right\rangle_{t}$ be time-dependent? Explain your answer.

The $J=2$ and $J=3$ eigenstates of \widehat{J}^{2} have different energies, so the minimum criterion for time-dependence of an expectation value is met. However the selection rule for \widehat{J}^{2} is $\Delta J=0$. Thus there is no contribution to $\left\langle\hat{J}^{2}\right\rangle_{t}$ from a cross term between $\psi_{2, M}$ and $\psi_{3, M^{\prime}}$ regardless of the values of M and M^{\prime}.

II. The Two-Level Problem: Bright and Dark States

(40 Points)
Consider the 2-level problem where

$$
\begin{aligned}
& E_{1}^{(0)}=A+\Delta / 2 \quad(\Delta>0) \\
& E_{2}^{(0)}=A-\Delta / 2 \\
& H_{12}^{(1)}=V \quad(|V| \ll \Delta) \\
& H_{11}^{(1)}=H_{22}^{(1)}=0
\end{aligned}
$$

The eigen-energies and eigen-functions are

$$
\begin{array}{ll}
& E_{ \pm}=A \pm\left(\Delta / 2+V^{2} / \Delta\right) \\
\star \quad & \psi_{+}=\left[1-(V / \Delta)^{2}\right]^{1 / 2} \psi_{1}+(V / \Delta) \psi_{2} \\
\star \quad & \psi_{-}=-(V / \Delta) \psi_{1}+\left[1-(V / \Delta)^{2}\right]^{1 / 2} \psi_{2} \\
& \psi_{1} \text { and } \psi_{2} \text { are normalized and orthogonal. }
\end{array}
$$

The zero-order wave functions, expressed in terms of the eigenfunctions are

$$
\begin{array}{ll}
\star \star & \psi_{1}^{(0)}=\left[1-(V / \Delta)^{2}\right]^{1 / 2} \psi_{+}-(V / \Delta) \psi_{-} \\
\star \star & \psi_{2}^{(0)}=(V / \Delta) \psi_{+}+\left[1-(V / \Delta)^{2}\right]^{1 / 2} \psi_{-}
\end{array}
$$

A. (10 points) Show that ψ_{+}and ψ_{-}in the \star equations are normalized and orthogonal.

$$
\begin{aligned}
& \int d \tau \psi_{+}^{\star} \psi_{+}=\left[1-(V / \Delta)^{2}\right]+(-V / \Delta)^{2}=1 \\
& \int d \tau \psi_{-}^{\star} \psi_{-}=(V / \Delta)^{2}+\left[1-(V / \Delta)^{2}\right]=1 \\
& \int d \tau \psi_{-}^{\star} \psi_{+}=(V / \Delta)\left[1-(V / \Delta)^{2}\right]^{1 / 2}-(V / \Delta)\left[1-(V / \Delta)^{2}\right]^{1 / 2}=0
\end{aligned}
$$

B. (10 points) Suppose that a laser is used to excite molecules from level 0 (at $E_{0}=0$) to the two-level system
$E_{1}=A+\Delta / 2$
where $\mu_{10} \neq 0$ and $\mu_{20}=0$.
Consider an experiment in which the total fluorescence intensity is recorded as the frequency of a long-pulse excitation laser is scanned through the frequency region that includes the $\frac{E_{+}-E_{0}}{h}$ and $\frac{E_{-}-E_{0}}{h}$ eigenstate to eigenstate transition frequencies. This is called a "fluorescence excitation spectrum". The fluorescence intensity from the E_{+} level is proportional to

$$
I_{+0} \propto\left|\mu_{+0}\right|^{2} \equiv\left|\int d x \psi_{+}^{\star} \hat{\mu} \psi_{0}\right|^{2}
$$

Sketch the observed fluorescence excitation spectrum and specify the relative intensities of the transitions in the spectrum.

I was trying to trick you by labeling the frequency axis for both actual and zero-order frequencies. The transitions occur between the actual energy levels

$$
\frac{E_{-}-E_{0}}{h} \quad \text { and } \quad \frac{E_{+}-E_{0}}{h}
$$

The intensities of transitions into the + and - eigenstates are proportional to the fractional character of the bright state in each eigenstate. The bright state is ψ_{1} because $\mu_{10} \neq 0$ and $\mu_{20}=0$.
In ψ_{+}fractional character of ψ_{1} is $\left[1-(V / \Delta)^{2}\right]$.
In ψ_{-}fractional character of ψ_{1} is $\left(\frac{V}{\Delta}\right)^{2}$.
A basic assumption of perturbation theory is $|V| \ll|\Delta|$.

Any answer that shows

$$
\frac{\mathrm{I}_{E_{-}-E_{0}}}{h}<\frac{\mathrm{I}_{E_{+}-E_{0}}}{h}
$$

gets full credit.
C. (20 points) Now consider short-pulse excitation of the two-level system from level E_{0}.
(i) (3 points) Which zero-order level (level 1 or level 2) is "bright" and which is "dark"?
Level 1 is bright because $\mu_{10} \neq 0$.
Level 2 is dark because $\mu_{20}=0$.
(ii) (3 points) Based on your answer to part (i), what is $\Psi(x, t=0)$?

$$
\Psi(x, t=0)=\psi_{1}^{(0)}(x)=\left[1-(V / \Delta)^{2}\right]^{1 / 2} \psi_{+}-(V / \Delta) \psi_{-}
$$

(iii) (4 points) Write an expression for $\Psi(x, t)$, following the prescription that the bright state produced at $t=0$ must be expressed as a linear combination of the eigenstates, each with a phase factor $e^{-i E_{ \pm} t / \hbar}$.

$$
\Psi(x, t)=\left[1-(V / \Delta)^{2}\right]^{1 / 2} e^{-i E_{+} t / \hbar} \psi_{+}-(V / \Delta) e^{-i E_{-} t / \hbar} \psi_{-}
$$

(iv) (10 points) The observed fluorescence intensity will exhibit quantum beats where

$$
I(t) \propto\left|\int d x \Psi^{\star}(x, t) \hat{\mu} \psi_{0}\right|^{2}
$$

Describe the features of this quantum beating signal.
One prepares a coherent superposition of ψ_{+}and ψ_{-}at $t=0$, as shown in (iii) above because one prepares the bright zero-order state.
\star Does the fluorescence intensity at $t=0, I(t=0)$, correspond to a maximum or minimum?
The fluorescence intensity is maximum at $t=0$.
\star Are the oscillations observed at frequency

$$
\frac{E_{1}-E_{2}}{h} \quad \text { or } \quad \frac{E_{+}-E_{-}}{h}
$$

or both?
The oscillations occur at frequency $\frac{E_{+}-E_{-}}{h}$. Full credit for $\frac{E_{+}-E_{-}}{\hbar}$ but that is angular frequency, ω, rather than the ordinary frequency, ν.

* What is the ratio of the intensity at the first minimum of $I(t)$ to that at the first maximum, $I_{\min } / I_{\max }$?
This can be algebraically complicated without a trick. The QB intensities are maximum at

$$
\begin{aligned}
2 \pi n & =\frac{E_{+}-E_{-}}{\hbar} t_{\max } \\
t_{\max } & =n \frac{2 \pi \hbar}{E_{+}-E_{-}}
\end{aligned}
$$

For the minima, we require

$$
\begin{aligned}
t_{\min }= & \left(2 n+\frac{1}{2}\right) \frac{h}{E_{+}-E_{-}} \quad \text { so for the earliest minimum } \\
t_{\min }= & \frac{1}{2} \frac{2 \pi \hbar}{E_{+}-E_{-}} \\
\Psi\left(x, t_{\min }\right)= & e^{-i E_{+} t / \hbar}\left[\left[1-(V / \Delta)^{2}\right]^{1 / 2} \psi_{+}-(V / \Delta) e^{i\left(E_{+}-E_{-}\right) t / \hbar} \psi_{-}\right] \\
e^{i\left(E_{+}-E_{-}\right) t_{\min } / \hbar}= & e^{i \pi}=-1 \\
\Psi\left(x, t_{\min }\right)= & e^{-i E_{+} t_{\min } / \hbar}\left[\left[1-(V / \Delta)^{2}\right]^{1 / 2} \psi_{+}+(V / \Delta) \psi_{-}\right] \\
\operatorname{term~in~}[\quad]= & {\left[1-(V / \Delta)^{2}\right]^{1 / 2}\left[1-(V / \Delta)^{2}\right]^{1 / 2} \psi_{1} } \\
& +[1-(V / \Delta)]^{1 / 2} V / \Delta \psi_{2} \\
& -(V / \Delta)^{2} \psi_{1}+(V / \Delta)\left[1-(V / \Delta)^{2}\right]^{1 / 2} \psi_{2} \\
= & \underbrace{[1-2(V / \Delta)] \psi_{1}}_{\text {bright }}+\underbrace{2(V / \Delta)\left[1-(V / \Delta)^{2}\right]^{1 / 2} \psi_{2}}_{\text {dark }}
\end{aligned}
$$

So intensity at $t_{\min }$ is $\left[1-2(V / \Delta)^{2}\right]^{2} \mu_{10}^{2}$ and at $t_{\max }$ it is μ_{10}^{2}.

III. VIBRATIONAL TRANSITION INTENSITIES AND ANHARMONIC INTERACTIONS

(20 Points)
The intensities of vibrational absorption transitions are proportional to

$$
I_{v^{\prime}, v^{\prime \prime}} \propto\left|\int d Q \psi_{v^{\prime}}(Q) \hat{\mu}(\widehat{Q}) \psi_{v^{\prime \prime}}(Q)\right|^{2}
$$

where

$$
\hat{\mu}(\widehat{Q})=\mu_{0}+\frac{d \mu}{d Q} \widehat{Q}+\frac{1}{2} \frac{d^{2} \mu}{d Q^{2}} \widehat{Q^{2}}
$$

where, for a harmonic oscillator, the displacement from equilibrium (called \hat{x} in the lecture notes)

$$
\widehat{Q}=\left(\frac{\hbar}{2 \mu \omega}\right)^{1 / 2}\left[\hat{\mathbf{a}}+\hat{\mathbf{a}}^{\dagger}\right]
$$

and, for a harmonic oscillator

$$
\begin{aligned}
\int d Q \psi_{v-1} \hat{\mathbf{a}} \psi_{v} & =v^{1 / 2} \\
\int d Q \psi_{v+1} \hat{\mathbf{a}}^{\dagger} \psi_{v} & =(v+1)^{1 / 2}
\end{aligned}
$$

A. (5 points) What is the ratio of transition probabilities for the $v^{\prime}=1 \leftarrow v^{\prime \prime}=0$ fundamental transition to that for the $v^{\prime}=2 \leftarrow v^{\prime \prime}=1$ hot band?

$$
\int d Q \psi_{v+1}^{\star} \widehat{Q} \frac{d \mu}{d Q} \psi_{v} \propto(v+1)^{1 / 2}
$$

Transition intensity is $\propto v$ of higher state

$$
\frac{\mathrm{I}_{2-1}}{\mathrm{I}_{1-0}}=\frac{2}{1} .
$$

B. (15 points) In OCS there are 3 normal modes and $\frac{\partial \mu}{\partial Q_{i}} \neq 0$ for normal modes numbered $i=1,2$, and 3 . This means that there are allowed fundamental transitions $(1,0,0) \leftarrow(0,0,0),(0,1,0) \leftarrow(0,0,0)$, and $(0,0,1) \leftarrow(0,0,0)$ where each zero-order vibrational level is denoted by $\left(v_{1}, v_{2}, v_{3}\right)$. Suppose that there is an important anharmonic resonance, $k_{122} \widehat{Q}_{1} \widehat{Q}_{2}^{2}$.
(i) (3 points) What are the selection rules for anharmonic interactions caused by $k_{122} \widehat{Q}_{1} \widehat{Q}_{2}^{2}$?

$$
\Delta v_{1}= \pm 1
$$

$$
\Delta v_{2}= \pm 2,0
$$

$\Delta v_{3}=0$

\widehat{Q}_{1}	selection rule is $\Delta v_{1}= \pm 1$
\widehat{Q}_{2}^{2}	selection rule is $\Delta v_{2}=0, \pm 2$
\widehat{Q}_{3}^{0}	selection rule is $\Delta v_{3}=0$

(ii) (3 points) Consider the anharmonic interaction between the $\psi_{(1,0,0)}^{(0)}$ and $\psi_{(0,2,0)}^{(0)}$ zero-order states:

$$
\begin{aligned}
V & \equiv \int d Q_{1} d Q_{2} d Q_{3} \psi_{(1,0,0)}^{(0)} \widehat{Q}_{1} \widehat{Q}_{2}^{2} \psi_{(0,2,0)}^{(0)} \\
\Delta & \equiv E_{(0,2,0)}^{(0)}-E_{(1,0,0)}^{(0)} \\
E_{+}-E_{-} & =\Delta+2 V^{2} / \Delta \\
\psi_{(1,0,0)}^{(0)} & =\left[1-(V / \Delta)^{2}\right]^{1 / 2} \psi_{+}-(V / \Delta) \psi_{-} \\
\psi_{(0,2,0)}^{(0)} & =(V / \Delta) \psi_{+}+\left[1-(V / \Delta)^{2}\right]^{1 / 2} \psi_{-} \\
\psi_{+} & =\left[1-(V / \Delta)^{2}\right]^{1 / 2} \psi_{(1,0,0)}^{(0)}+(V / \Delta) \psi_{(0,2,0)}^{(0)} \\
\psi_{-} & =-(V / \Delta) \psi_{(1,0,0)}^{(0)}+\left[1-(V / \Delta)^{2}\right]^{1 / 2} \psi_{(0,2,0)}
\end{aligned}
$$

A short infrared pulse excites a coherent superposition of ψ_{+}and ψ_{-}. What is $\Psi\left(Q_{1}, Q_{2}, Q_{3}, t=0\right) ?$
This is a vibrational transition. The $\psi_{(1,0,0)}^{(0)}$ state is bright (vibrational fundamental) and the $\psi_{(0,2,0)}$ state is dark (vibrational overtone).

$$
\Psi\left(Q_{1}, Q_{2}, Q_{3}, t=0\right)=\psi_{(1,0,0)}^{(0)}
$$

(iii) (5 points) The number operator $\widehat{N}_{i}=\hat{\mathbf{a}}_{i}^{\dagger} \hat{\mathbf{a}}_{i}$ tells us the number of quanta in the i-th zero-order normal mode. What are the expectation values of \widehat{N}_{1} and \widehat{N}_{2} at $t=0$?

$$
\text { at } t=0 \quad\left\langle\widehat{N}_{1}\right\rangle_{t=0}=1,\left\langle\widehat{N}_{2}\right\rangle_{t=0}=0
$$

(iv) (4 points) Describe what you expect for the time evolution of $\left\langle\widehat{N}_{1}\right\rangle$ and $\left\langle\widehat{N}_{2}\right\rangle$ for the coherent superposition state excited by the short infrared pulse. Your description can be in words, pictures, or equations.
$\left\langle\widehat{N}_{1}\right\rangle_{t}$ oscillates at

$$
\omega_{+-}=\frac{E_{+}-E_{-}}{\hbar}=\frac{\Delta+2 V^{2} / \Delta}{\hbar}
$$

It is at its maximum value of 1.00 at $t=0$.
It is at its minimum value of $1.00-\delta$ at

$$
\begin{gathered}
t_{\min }=\frac{1}{2} \frac{h}{E_{+}-E_{-}} . \\
\left\langle\widehat{N}_{2}\right\rangle_{t}=0 \quad \text { at } \quad t=0 \\
=2 \delta \quad \text { at } \quad t_{\min }=\frac{1}{2} \frac{h}{E_{+}-E_{-}} .
\end{gathered}
$$

δ is small, so it could be calculated as in problem II.C (iv).

$$
d=4(V / \Delta)^{2}\left[(V / \Delta)^{2}-1\right]
$$

POSSIBLY USEFUL INFORMATION

The classical mechanical relationship between x and p is

$$
p(x)=[2 m(E-V(x))]^{1 / 2} .
$$

For a harmonic oscillator with $V(x)=\frac{1}{2} k x^{2}$, when $x=0$ and $E_{v}=\hbar \omega(v+1 / 2)$

$$
p_{v}(0)=[2 \mu \hbar \omega(v+1 / 2)]^{1 / 2} .
$$

$\widehat{L}^{2} \psi_{L, M_{L}}=\hbar^{2} L(L+1) \psi_{L, M_{L}}$
$\widehat{L}_{z} \psi_{L, M_{L}}=\hbar M_{L} \psi_{L, M_{L}}$
$\widehat{L}_{ \pm} \psi_{L, M_{L}}=\hbar\left[L(L+1)-M_{L}\left(M_{L} \pm 1\right)\right]^{1 / 2} \psi_{L, M_{L} \pm 1}$
$E_{n \ell}=\frac{-\hbar c \mathcal{R}}{n^{2}}$
$\widehat{H}^{\text {Zeeman }}=-\frac{\mu_{B}}{\hbar} B_{z}\left[\widehat{L}_{z}+2 \widehat{S}_{z}\right]$ (μ_{B} is the "Bohr magneton" and B_{z} is the magnetic field along the z-axis)
$\Psi_{n}(x, t)=e^{-i E_{n} t / \hbar} \psi_{n}(x)$

MIT OpenCourseWare
http://ocw.mit.edu

5.61 Physical Chemistry

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

