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Lecture #12: Looking Backward Before First Hour Exam 

Postulates, in the same order as in McQuarrie. 

1. 	 Ψ(r,t) is the state function: it tells us everything we are allowed to know 
2. 	 For every observable there corresponds a linear, Hermitian Quantum 

Mechanical operator 

3. 	Any single measurement of the property A/  only gives one of the eigenvalues 
/of A

4. 	 Expectation values. The average over many measurements on a system that is 
in a states that is completely specified by a specific Ψ(x,t). 

5. 	TDSE 

We will discuss these, and their consequences, in detail now. 

Postulate 1. 

The state of a Quantum Mechanical system is completely specified by Ψ(r,t) 

* 	 Ψ∗Ψdxdydz is the probability that the particle lies within the volume element dxdydz 
that is centered at 

 
r = xî  + yĵ + zk̂  ( î , ĵ,  and k̂ are unit vectors) 

* 	 Ψ is “well behaved” 
normalizable (in either of two senses: what are these two senses?) 
square integrable [usually requires that lim ψ(x) → 0 ] 

x→ ±∞  

⎧continuous ⎫ 
⎪ ⎪ dψ 
⎨single-valued ⎬ ψ  and 

dx⎪	 ⎪finite everywhere ⎩	 ⎭

When do we get to break some of the rules about “well behaved”? (from non-physical but 
illustrative problems)? 

∂2ψ
*A finite step in V(x) causes discontinuity in 2∂x

∂ψ
∗Α δ-function (infinite sharp spike) and infinite step in V(x) cause a discontinuity in 

∂x 

Nothing can cause a discontinuity in ψ. 
When V(x) = ∞, ψ(x) = 0. Always! [Why?] 
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Postulate 2 

For every observable quantity in Classical Mechanics there corresponds a linear, Hermitian 
Operator in Quantum Mechanics. 

linear means A/ ( c1ψ1 + c2ψ 2 ) = c1 A
/ψ1 + c2 A

/ψ 2 . We have already discussed this. 

Hermitian is a property that ensures that every observation results in a real number (not 
imaginary, not complex) 

A Hermitian operator satisfies 

∞ 
f *(Agˆ )dx =

∞ 
g(Â * f *)dx∫−∞ ∫−∞ 

Afg = ( Agf )*
 (useful short-hand notation) 

where f and g are well-behaved functions. 


This provides a very useful prescription for how to “operate to the left”. 


Suppose we replace g by f to see how Hermiticity ensures that any measurement of an 

observable quantity must be real. 


∞ 
f * A/ fdx =

∞ 
f A/ * f *dx  from the definition of Hermitian∫−∞ ∫−∞ 

Aff = (Aff)* 

/The LHS is just 
f 
, the expectation value of A/  in state f.A

The RHS is just LHS*, which means 

LHS = LHS* 

/thus 
f
 is real.A

Non-Lecture 

Often, to construct a Hermitian operator from a non-Hermitian operator, Ânon-Hermitian , we take 


1
A/QM = ( A/ non-Hermitian + A/ *non-Hermitian ) . 

2 

OR, when an operator C/ = A/ B/  is constructed out of non-commuting factors, e.g. 
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⎡⎣ A/, B/ ⎤⎦ ≠ 0 . 


Then we might try C/Hermitian = 
1 

2 A/ B/ + B/ A/( ) . 

Angular Momentum 

Classically 

 = r̂ × p̂ = 
 xî  +  y ĵ +  z k̂

 

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

î  

x 

px 

ĵ 

y 

py 

k̂ 

z 

pz 

⎞ 

⎠ 

⎟ 
⎟ 
⎟

 x = ypz – zpy Does order matter? 

[ y, pz ] = 0 ⎞ 
⎟  by inspection (of what?) 

⎡⎣ z, py ⎤⎦ = 0⎠ 
which is a good thing because the standard way for compensating for non-commutation, 

r̂ × p̂ + p̂ × r̂ = 0 
fails, so we would not be able to guarantee Hermiticity this way 

End of Non-Lecture 

Postulate 3 

Each measurement of the observable quantity associated with A/  gives one of the eigenvalues 

of A/ . 

A/ψ n = anψ n the set of all eigenvalues, an{ }, is called spectrum of A/ 

Measurements: 

a1,ψ1 

ψ A/ a2,ψ2 

etc. 
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5.61 Fall 2013 Lecture #12 page 4 

Measurement causes an arbitrary ψ to “collapse” into one of the eigenstates of the 
measurement operator. 

Postulate 4 

/For a system in any state normalized to 1, ψ, the average value of A/  is ≡ 
∞

ψ * A/ψdτ .A ∫−∞ 

(dτ means integrate over all coordinates). 

We can combine postulates 3 and 4 to get some very useful results. 

1. Completeness (with respect to each operator) 

ψ = ∑ciψ i  expand ψ in a “complete basis set” of eigenfunctions, ψi 
i 

(many choices of “basis sets”) 

Most convenient to use all eigenstates of A/  ψ i ai{ },{ }  
Aˆ ˆWe often use a complete set of eigenstates of A {ψ }  as “basis states” for the operator B n
 

A
 ˆeven when the {ψ }  are not eigenstates of B . n 

2. Orthogonality 

If ψi,ψj belong to ai ≠ aj, then ∫ dxψ *
i ψ j = 0 . Even when we have a degenerate eigenvalue, 


where ai = aj, we can construct orthogonal functions. For example: 


A/ψ1 = a1ψ1 , A/ψ 2 = a1ψ 2 , ψ1,ψ2 are normalized but not necessarily orthogonal. 


NON-Lecture 
Construct a pair of normalized and orthogonal functions starting from ψ1 and ψ2. 

Schmidt orthogonalization 

S ≡ ∫  dxψ1
*ψ 2 ≠ 0,  the overlap integral 

ψ ′ 2 = N (ψ 2 + aψ1 ),  constructed to be orthogonal to ψ1 

* *∫ dxψ1 ψ ′ 2 = N ∫ dxψ1 (ψ 2 + aψ1 ) 
= N S  + a( ). 

If we set a = –S, ψ′2 is orthogonal to ψ1. We must normalize ψ′2. 
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5.61 Fall 2013 	 Lecture #12 page 5 

2 ∫ dx (ψ*
2 − S*ψ* ) (ψ 2 − Sψ )1 = ∫ dxψ 2 ′*ψ 2 ′ = N 1 1 

2 ⎤2 += 2 ⎡⎣1 − 2N S S ⎦ 
−1/2 2 ⎤N = ⎡1 − S⎣ ⎦
 

⎤
−1/2 (ψ 2 − Sψ )
2 

⎦ 1ψ 2 ′ = ⎡⎣1 − S 

ψ′2 is normalized to 1 and orthogonal to ψ1. This turns out to be a very useful trick. 

“Complete orthonormal basis sets” 

Next we want to compute the {ci} and the {Pi}. Pi is the probability that an experiment on ψ 
yields the ith eigenvalue. 

ψ = ∑ciψ i 
i 

(ψ is any normalized state) 

*Left multiply and integrate by ψ j (which is the complex conjugate of the eigenstate of Â

that belongs to eigenvalue aj). 

*∫ dxψ *
j ψ = ∫ dxψ j ∑ciψ i 

i 

= ∑ciδ ji 
i 

c j = ∫ dxψ *
j ψ  (so we can compute all {ci }) 

What about 

/ = ∑ PiaiA
i 

⎡ * * ⎤∫ dxψ * A/ψ = ∫ dx ⎢∑ci ψ i ⎥ A/ ⎢
⎡∑cj ψ j ⎥

⎤ 

⎣ i ⎦ ⎣ j ⎦
⎡ * * ⎤ ⎡ ⎤

= ∫ dx ⎢∑ci ψ i ⎥ ⎢∑ajcj ψ j ⎥
⎣ i ⎦ ⎣ j ⎦

Orthonormality kills all terms 
in the sum over j except j = i. 
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2∫ dxψ * A/ψ = ∑ ci ai 
i 

2/ = ∑thus ci aiA
i 

Pi = ci 

2 = ∫ dxψ i 
*ψ

2 

so the “mixing coefficients” in ψ 

ψ = ∑ ciψi 

become “fractional probabilities” in the results of repeated measurements of A. 

Â = ∑ Piai 

2
Pi = .∫ dxψ *

i ψ 
What does the ⎡⎣A/, B/ ⎦⎤  commutator tell us about 

* the possibility for simultaneous eigenfunctions 
* σAσB ? 

1. 	If ⎣⎡A/, B/ ⎦⎤ = 0 , then all non-degenerate eigenfunctions of A/  are eigenfunctions of B/ 

(see page 10). 

2. 	If ⎡⎣A/, B/ ⎦⎤ = const ≠ 0 

σ 2 
Aσ 2 

B ∫ dxψ *[A, B]ψ )2 
> 0 (and real) 

note that [ x̂, p̂] = in 
this gives 

σ p σ x ≥ 
n 

(see page 11)
x 2

≥ − 1 (− 
4 

( 
n 

NON-LECTURE 

Suppose 2 operators commute 

⎡ / / ⎤⎦ = 0⎣A, B
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/Consider the set of wavefunctions {ψi} that are eigenfunctions of observable quantity A . 

ψ { } are realA/ψ i = ai i ai

*	 *0 = ∫ dxψ j ⎡⎣A/, B/ ⎤⎦ ψ i = ∫ dxψ j ( A/ B/ − B/ A/ ) ψ i 

= ∫ dxψ* 
j A/ B/ψ − ∫ dxψ * 

j B/ A/ψi	 icommutator is 0 
* B/ψ	 * B/ψ= aj ∫ dxψ j i − ai ∫ dxψ j i 

= (aj	 − ai ) ∫ dxψ * 
j B/ψ i 

0 = (aj − ai ) ∫ dxψ j B/ψ 
I ii

Bji 

if aj ≠ ai → Bji = 0 this implies that ψi and ψj are eigenfunctions of B̂  that belong to 
ˆdifferent eigenvalues of B 

if aj = ai → Bji ≠ 0 This implies that we can construct mutually orthogonal 
eigenfunctions of B̂  from the set of degenerate eigenfunctions of 
Â . 

All nondegenerate eigenfunctions of A/  are eigenfunctions of B/  and eigenfunctions of B/ 
/can be constructed out of degenerate eigenfunctions of A . 

Some important topics: 

0. 	Completeness. 
1. 	 For a Hermitian Operator, all non-degenerate eigenfunctions are orthogonal and the 

non-degenerate ones can be made to be orthonormal. 
2. 	Schmidt orthogonalization 

3. 	 Are eigenfunctions of A/ eigenfunctions of B/  if ⎡⎣A/, B/ ⎦⎤ = 0 ? 

4. 	 ⎡⎣A/, B/ ⎦⎤ ≠ 0 ⇒  uncertainty principle free of any thought experiments. 

∂
5. 	 Why do we define p̂ as − in ?

∂x 
6. 	 Express non-eigenstate as linear combination of eigenstates. 

0. 	Completeness. Any arbitrary ψ can be expressed as a linear combination of functions 
that are members of a “complete basis set.” 
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For a particle in box 

⎛ 2 ⎞
1/2 

⎛ nπ ⎞ψ n = ⎜ ⎟ sin ⎜ x⎟⎝ a ⎠ ⎝ a ⎠

h2 

En = n2
28ma

complete set n = 1, 2, … ∞  What do we call these ψn in a non-QM context? 

ψ = ∑ciψ i , ci = ∫ dxψ*
i ψ 

i 

To obtain the set of {ci}, left-multiply ψ by Ψ*
i and integrate. Exploit orthonormality of the 

basis set {ψi}. 

Fourier series: any arbitrary, well-behaved function, defined on a finite interval (0,a), can be 
decomposed into orthonormal Fourier components. 

1 ∞ ⎛ nπx nπx ⎞f (x) = a0 + ∑ ⎜⎝ an cos + bn sin ⎟⎠ . 
2 n=1 a a 

For our usual ψ(0) = ψ(a) = 0 boundary conditions, all of the an = 0. We can use particle in 
box functions {ψn} to express any ψ where ψ(0) = ψ(a) = 0. Another kind of boundary 
condition is periodic (e.g. particle on a ring) ψ(x + a) = ψ(x) where a is the circumference of 
the ring. Then, for the 0 ≤ x ≤ a interval, we need both sine and cosine Fourier series. 

1. Hermitian Operator 

If A/  is Hermitian, all of the non-degenerate eigenstates of A/  are orthogonal and all of the 
degenerate ones can be made orthogonal. 

If A/  is Hermitian 
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A AA∗ ψ ∗ dxψi 
∗ Aψj = dxψj i���� � �� � 

∗ aj ψj a ψ∗ 
i i 

/

/


∗ a = ai because AAi 
corresponds to a 
classically 
observable quantity 

rearrange 

( aj − ai ) ∫ dx ψ *i ψ j = 0 
I i  

order of these 
doesn't matter 

either aj = ai (degenerate eigenvalue) 

OR 

when aj ≠ ai ψi is orthogonal to ψj. 

Now, when ψi and ψj belong to a degenerate eigenvalue, they can be made to be orthogonal, 
/yet remain eigenfunctions of A . 

⎛ ⎞ ⎛ ⎞/A = 
⎝⎜ ∑ ciψ i ⎠⎟ aj ⎝⎜ ∑ ciψ i ⎠⎟ 

i i 

for any linear combination of degenerate eigenfunctions. 

Find the correct linear combination. Easy to get a computer to find these orthogonalized 
functions. 

Non-Lecture 


2. Schmidt orthogonalization 

We can construct a set of mutually orthogonal functions out of a set of non-orthogonal 
degenerate eigenfunctions. 
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Consider two-fold degenerate eigenvalue a1 with non-orthogonal eigenfunctions, ψ11 and ψ12. 

ˆConstruct a new pair of orthogonal eigenfunctions that belong to eigenvalue a1 of A . 

overlap S11,12 = ∫ ψ * ψ11 12 

ψ ′ ≡ ψ11 11 

ψ12 ′ ≡ N [ψ12 − S11,12ψ11 ] 
Check for orthogonality: 

* ⎡ * ψ * ψ ⎤∫ dxψ11 ′ ψ12 ′ = N ⎣ ∫ dxψ11 12 − S11,12 ∫ dxψ11 11 ⎦ 
= N [S11,12 − S11,12 ] = 0. 

Find normalization constant: 

1 = ∫ dxψ ′*ψ ′ 12 12 

⎡ ∫ dxψ * ψ + 2 ∫ dxψ * ψS11,12 2 12 12 11 11⎢ = N 
* ψ⎢ − ∫ dxψ * ψ * ψ⎣ 12S11,12 11 − ∫ dxS11,12 11 12 

2 ⎡ 2 − 2 − 2 ⎤= 1 +N S11,12 S11,12 S11,12 ⎣ ⎦ 
2 ⎡ 2 ⎤= 1 −N S11,12 ⎣ ⎦ 

−1/2 2 ⎤N = ⎡1 − S11,12 ⎣ ⎦ 
−1/2 2 ⎤ ψ ψψ ′ = ⎡1 − [ 12 − S11,12 11 ]12 ⎣ S11,12 ⎦ 

ˆNow we have a complete set of orthonormal eigenfunctions of A . Extremely convenient and 
useful. 

End of Non-Lecture 

3. Are eigenfunctions of A/  also eigenfunctions of B/  if ⎣⎡A/, B/ ⎦⎤ = 0 ? 

/A/ B/ = B/ A


A/ ( B/ψ i ) = B/ ( A/ψ i ) = ai ( B/ψ i )
 

thus B/ψ i  is eigenfunction of A/  belonging to eigenvalue ai. If ai is non-degenerate, 
/B/ψ i = cψ i , thus ψi is also an eigenfunction of B . 
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We can arrange for one set of functions {ψi} to be simultaneously eigenfunctions of A/  and 

B/  when ⎣⎡A/, B/ ⎤⎦ = 0 . 

This is very convenient. For example: nx, ny, nz
?  and J/ 

zfor 3D box and eigenvalues of J 2

for rigid rotor. Another example: 1D box has non-degenerate eigenvalues.  Thus every 
eigenstate of Ĥ  is an eigenstate of a symmetry operator that commutes with Ĥ . 

4. ⎡⎣A/, B/ ⎤⎦ ≠ 0 ⇒  uncertainty principle free of any thought expt. 

Suppose 2 operators do not commute 

⎡ / / ⎤ / ≠ 0. 

It is possible (we will not do it) to prove, for any Quantum Mechanical state ψ 

⎣A, B⎦ = C

2 1 2
σ 2 

Aσ B ≥ − ( ∫ dxψ *C/ψ ) ≥ 0. 
4 

Consider a specific example: 

A/ = x̂

B/ = p̂x 
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[ x̂, p̂ ] f (x) = x̂p̂ f − p̂ xfˆx x x 

∂ ∂ 
= x (−in) f − (−in) (xf )

∂x ∂x 
= (−in)[ xf ′ − f − xf ′ ] 
= +inf 

∴ [ x̂, p̂x ] = +in  lI
⇓
unit 

operator 

so the above (unproved) theorem says 

2σ 2 1 ⎡in ∫ dxψ * ψ ⎤
2 n2 

σ x p ≥ − I i = −(−1)
x ⎢ ⎥4 ⎣ =1 ⎦ 4 

n
σ xσ p ≥ + Heisenberg uncertainty principle 

2 

This is better than a thought experiment because it comes from the mathematical properties 
of operators rather than being based on how good one’s imagination is in defining an 
experiment to measure x and px simultaneously. 

Non-Lecture 

5. Why do we define p̂  as p̂ = −in 
∂ 

∂x 
?

 Is the -i needed? Why not +i? 

∞ d 
p̂ = −in dxψ * ψ∫−∞ dx 

which must be real, p̂ = p̂ * . But is it? 
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integrate by parts, 
treat ψ* and ψ as 
linearly independent 
functions 

∞ dψ ⎤* d ⎡ p = +in 
∞ 

dxψ ψ* = +(in) ψψ * p− ∫ dx ψ * −∞ ⎥ =∫−∞ dx ⎢⎣ dx ⎦
took complex
 
conjugate of the
 0equation for p because ψ,ψ* must 

go to zero at ± ∞ 
thus p = p *, i is needed in p̂ . 

i vs. –i is an arbitrary phase choice, supported by a physical argument. 

Suppose we have 

ψ = eikx 

ikx = +nkeikx( )e
p̂ψ = −in ik
p̂we like to associate with +nk rather than –nk. 

6. Suppose we have a non-eigenstate ψ for the particle in a box 

for example, 

ψ(x) =  Nx(x − a) (x − a/2) 
 
 ........... .... .......... ...... ....... ..... ......... .... 

.............
.... ............ .... 

.................
.... ............. ...  ...................

...

............ .... ........... ....
 

0 a  
............

.....
....
...........
........
....
 

......................
.... 

..........................• • 

......

............
...........
..... 

.........................

........................

............................... ......................
....

.........................  = • 
...................
.... • 

...........
..........
.... ....................

.... ............
......
...................

....
............

............
....  ..............

... 
.................

........... ............
...
..............
....

...................
.... 

poor man’s ..
.............

...
.... .............

....

.................
.... 

......  ............ .... ............ .... 
..........
.... ........... ..... ......... ...... ....... .... ........... ............. ψ2.....................

.....  ............ 

Normalize this 
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a 
dx ψ * ψ = 1 = N 2 

a
dx x2 ( x − a) ( x − a / 2)∫0 ∫0 

2 2

⎛ 840 ⎞
1/2 

 find that N = ⎜ 7 ⎟ .⎝ a ⎠

⎛ 2 ⎞
1/2 nπx

Now expand this function in the ψ n = ⎜ ⎟ sin basis set.⎝ a ⎠ a

ψ = ∑
∞ 

cnψ n
 find the cnn =1 

Left multiply by ψ *
m and integrate 

∫ dxψ * 
mψ = ∑

∞ 

cn ∫ dx ψ * 
mψ n = cm 

n =1 orthogonal 

1/2 
1/2 −7 /2  ⎛ 2 ⎞ mπx 

cm = (840) a ⎜ ⎟ ∫
a 
dx x ( x − a)( x − a / 2)sin ⎝ a ⎠ 0 a

odd with respect to 
0,a  interval needs to be 

odd on 0,a 
too in order 
to have an 

even 
integrand 

thus cm = 0 for all odd-m 

m = 2n – 1 n = 1,2, … 

c2n–1 = 0 

c2n ≠ 0 find them 
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1/2 2(1680) a ⎛ 3 a ⎞ 2nπx 
c2n = 

4 ∫0 
dx ⎜ x3 − ax2 + x⎟ sin 

a ⎝ 2 2 ⎠ a 

2nπx
change variables y = 

a 
3 2 22nπ ⎡ ⎤16801/2 

⎛ a ⎞ 3 ⎛ a ⎞ a ⎛ a ⎞ ⎛ a ⎞ = 
4 ∫ dy ⎢⎜ ⎟ y3 − a ⎜ ⎟ y2 + ⎜ ⎟ y⎥ ⎜ ⎟ sin y 

a 0 ⎣⎝ 2nπ ⎠ 2 ⎝ 2nπ ⎠ 2 ⎝ 2nπ ⎠ ⎦ ⎝ 2nπ ⎠
steps skipped 

6 −3c2n = 16801/2 = 0.9914 n

(2nπ)3
 

c2 ≈ 1 as expected from general shape of ψ. 

= ∫ dx ψ * H/ψ = ∑
∞ 

Pn EnNow that we have {cn}, we can compute E 
n =1 prob

ability 

Pn = cn 
2 

2 ( )2 2−3E c2n = ∑ E2n = E1∑
∞ 

2n [0.9914n ]
n =1 n =1 

∞ (Is this a surprise for a−4= 4E1 (0.983)∑n ≈ 4E1 function constructed to 
n =1 resemble ψ2 where E2 = 

4E1?) 
End of Non-Lecture 
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