Lecture \#12: Looking Backward Before First Hour Exam

Postulates, in the same order as in McQuarrie.

1. $\Psi(r, t)$ is the state function: it tells us everything we are allowed to know
2. For every observable there corresponds a linear, Hermitian Quantum Mechanical operator
3. Any single measurement of the property \hat{A} only gives one of the eigenvalues of \hat{A}
4. Expectation values. The average over many measurements on a system that is in a states that is completely specified by a specific $\Psi(x, t)$.
5. TDSE

We will discuss these, and their consequences, in detail now.

Postulate 1.

The state of a Quantum Mechanical system is completely specified by $\Psi(\mathbf{r}, t)$

* $\quad \Psi \Psi d x d y d z$ is the probability that the particle lies within the volume element $d x d y d z$ that is centered at

$$
\overrightarrow{\mathbf{r}}=x \hat{i}+y \hat{j}+z \hat{k} \quad(\hat{i}, \hat{j}, \text { and } \hat{k} \text { are unit vectors })
$$

* Ψ is "well behaved"
normalizable (in either of two senses: what are these two senses?)
square integrable [usually requires that $\lim _{x \rightarrow \pm \infty} \psi(x) \rightarrow 0$] $\left\{\begin{array}{l}\text { continuous } \\ \text { single-valued } \\ \text { finite everywhere }\end{array}\right\} \psi$ and $\frac{d \psi}{d x}$

When do we get to break some of the rules about "well behaved"? (from non-physical but illustrative problems)?
*A finite step in $\mathrm{V}(\mathrm{x})$ causes discontinuity in $\frac{\partial^{2} \psi}{\partial x^{2}}$
*A δ-function (infinite sharp spike) and infinite step in $V(x)$ cause a discontinuity in $\frac{\partial \psi}{\partial x}$

Nothing can cause a discontinuity in ψ.
When $\mathrm{V}(x)=\infty, \psi(x)=0$. Always! [Why?]

Postulate 2

For every observable quantity in Classical Mechanics there corresponds a linear, Hermitian Operator in Quantum Mechanics.
linear means $\hat{A}\left(c_{1} \psi_{1}+c_{2} \psi_{2}\right)=c_{1} \hat{A} \psi_{1}+c_{2} \hat{A} \psi_{2}$. We have already discussed this.
Hermitian is a property that ensures that every observation results in a real number (not imaginary, not complex)

A Hermitian operator satisfies

$$
\begin{gathered}
\int_{-\infty}^{\infty} f^{*}(\hat{A} g) d x=\int_{-\infty}^{\infty} g\left(\hat{A}^{*} f^{*}\right) d x \\
A_{f g}=\left(A_{g f}\right)^{*} \quad \text { (useful short-hand notation) }
\end{gathered}
$$

where f and g are well-behaved functions.
This provides a very useful prescription for how to "operate to the left".
Suppose we replace g by f to see how Hermiticity ensures that any measurement of an observable quantity must be real.

$$
\begin{gathered}
\int_{-\infty}^{\infty} f * \hat{A} f d x=\int_{-\infty}^{\infty} f \hat{A} * f * d x \text { from the definition of Hermitian } \\
\mathrm{A}_{\mathrm{ff}}=\left(\mathrm{A}_{\mathrm{ff}}\right)^{*}
\end{gathered}
$$

The LHS is just $\langle\hat{A}\rangle_{f}$, the expectation value of \hat{A} in state f .
The RHS is just LHS*, which means
LHS = LHS*
thus $\langle\hat{A}\rangle_{f}$ is real.

Non-Lecture

Often, to construct a Hermitian operator from a non-Hermitian operator, $\hat{A}_{\text {non-Hermitian }}$, we take

$$
\hat{A}_{\mathrm{QM}}=\frac{1}{2}\left(\hat{A}_{\text {non-Hermitian }}+\hat{A}_{\text {non-Hermitian }}\right) .
$$

OR, when an operator $\widehat{C}=\hat{A} \widehat{B}$ is constructed out of non-commuting factors, e.g.

$$
[\hat{A}, \hat{B}] \neq 0
$$

Then we might try $\widehat{C}_{\text {Hermitian }}=\frac{1}{2}(\hat{A} \widehat{B}+\hat{B} \widehat{A})$.

Angular Momentum

Classically

$$
\rightarrow \vec{\ell}=\hat{r} \times \hat{p}=\left(\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
x & y & z \\
\ell_{x}, \hat{i}+\ell, \hat{j}+\ell, \hat{k}
\end{array} p_{y} p_{z}\right)
$$

$$
\left.\begin{array}{lc}
\ell_{x}=y p_{z}-z p_{y} & \text { Does order matter? } \\
& {\left[y, p_{z}\right]=0} \\
& {\left[z, p_{y}\right]=0}
\end{array}\right) \text { by inspection (of what?) }
$$

which is a good thing because the standard way for compensating for non-commutation,

$$
\hat{r} \times \hat{p}+\hat{p} \times \hat{r}=0
$$

fails, so we would not be able to guarantee Hermiticity this way End of Non-Lecture

Postulate 3

Each measurement of the observable quantity associated with \hat{A} gives one of the eigenvalues of \widehat{A}.

$$
\hat{A} \psi_{n}=a_{n} \psi_{n} \quad \text { the set of all eigenvalues, }\left\{a_{n}\right\}, \text { is called spectrum of } \hat{A}
$$

Measurements:

Measurement causes an arbitrary ψ to "collapse" into one of the eigenstates of the measurement operator.

Postulate 4

For a system in any state normalized to $1, \psi$, the average value of \hat{A} is $\langle\hat{A}\rangle \equiv \int_{-\infty}^{\infty} \psi^{*} \hat{A} \psi d \tau$. ($\mathrm{d} \tau$ means integrate over all coordinates).

We can combine postulates 3 and 4 to get some very useful results.

1. Completeness (with respect to each operator)

$$
\begin{gathered}
\psi=\sum_{i} c_{i} \psi_{i} \quad \text { expand } \psi \text { in a "complete basis set" of eigenfunctions, } \psi_{\mathrm{i}} \\
\text { (many choices of "basis sets") }
\end{gathered}
$$

Most convenient to use all eigenstates of $\hat{A}\left\{\psi_{i}\right\},\left\{a_{i}\right\}$
We often use a complete set of eigenstates of $\hat{A}\left\{\psi_{n}^{A}\right\}$ as "basis states" for the operator \hat{B} even when the $\left\{\Psi_{n}^{A}\right\}$ are not eigenstates of \hat{B}.

2. Orthogonality

If ψ_{i}, ψ_{j} belong to $a_{i} \neq a_{j}$, then $\int d x \psi_{i}^{*} \psi_{j}=0$. Even when we have a degenerate eigenvalue, where $a_{i}=a_{j}$, we can construct orthogonal functions. For example:
$\hat{A} \psi_{1}=a_{1} \psi_{1}, \hat{A} \psi_{2}=a_{1} \psi_{2}, \psi_{1}, \psi_{2}$ are normalized but not necessarily orthogonal.

NON-Lecture

Construct a pair of normalized and orthogonal functions starting from ψ_{1} and ψ_{2}.
Schmidt orthogonalization

$$
\begin{aligned}
S & \equiv \int d x \psi_{1}^{*} \psi_{2} \neq 0, \text { the overlap integral } \\
\psi_{2}^{\prime} & =N\left(\psi_{2}+a \psi_{1}\right), \text { constructed to be orthogonal to } \psi_{1} \\
\int d x \psi_{1}^{*} \psi_{2}^{\prime} & =N \int d x \psi_{1}^{*}\left(\psi_{2}+a \psi_{1}\right) \\
& =N(S+a)
\end{aligned}
$$

If we set $a=-S, \psi_{2}^{\prime}$ is orthogonal to ψ_{1}. We must normalize $\psi^{\prime}{ }_{2}$.

$$
\begin{aligned}
1 & =\int d x \psi_{2}^{\prime *} \psi_{2}^{\prime}=|N|^{2} \int d x\left(\psi_{2}^{*}-S^{*} \psi_{1}^{*}\right)\left(\psi_{2}-S \psi_{1}\right) \\
& =|N|^{2}\left[1-2|S|^{2}+|S|^{2}\right] \\
N & =\left[1-|S|^{2}\right]^{-1 / 2} \\
\psi_{2}^{\prime} & =\left[1-|S|^{2}\right]^{-1 / 2}\left(\psi_{2}-S \psi_{1}\right)
\end{aligned}
$$

$\psi^{\prime}{ }_{2}$ is normalized to 1 and orthogonal to ψ_{1}. This turns out to be a very useful trick.
"Complete orthonormal basis sets"
Next we want to compute the $\left\{c_{i}\right\}$ and the $\left\{P_{i}\right\} . P_{i}$ is the probability that an experiment on ψ yields the $\mathrm{i}^{\text {th }}$ eigenvalue.

$$
\psi=\sum_{i} c_{i} \psi_{i}
$$

(ψ is any normalized state)
Left multiply and integrate by ψ_{j}^{*} (which is the complex conjugate of the eigenstate of \hat{A} that belongs to eigenvalue a_{j}).

$$
\begin{aligned}
\int d x \psi_{j}^{*} \psi & =\int d x \psi_{j}^{*} \sum_{i} c_{i} \psi_{i} \\
& =\sum_{i} c_{i} \delta_{j i} \\
c_{j} & =\int d x \psi_{j}^{*} \psi\left(\text { so we can compute all }\left\{c_{i}\right\}\right)
\end{aligned}
$$

What about

$$
\begin{aligned}
\langle\hat{A}\rangle & =\sum_{i} P_{i} a_{i} \\
\int d x \psi * \hat{A} \psi & =\int d x\left[\sum_{i} c_{i}^{*} \psi_{i}^{*}\right] \hat{A}\left[\sum_{j} c_{j} \psi_{j}\right] \\
& =\int d x\left[\sum_{i} c_{i}^{*} \psi_{i}^{*}\right]\left[\sum_{j} a_{j} c_{j} \psi_{j}\right]
\end{aligned}
$$

Orthonormality kills all terms in the sum over j except $j=i$.

$$
\int d x \psi * \hat{A} \psi=\sum_{i}\left|c_{i}\right|^{2} a_{i}
$$

thus $\langle\hat{A}\rangle=\sum_{i}\left|c_{i}\right|^{2} a_{i}$

$$
P_{i}=\left|c_{i}\right|^{2}=\left|\int d x \psi_{i}^{*} \psi\right|^{2}
$$

so the "mixing coefficients" in ψ

$$
\psi=\sum c_{i} \psi_{i}
$$

become "fractional probabilities" in the results of repeated measurements of \mathbf{A}.

$$
\begin{aligned}
& \langle\hat{A}\rangle=\sum P_{i} a_{i} \\
& P_{i}=\left|\int d x \psi_{i}^{*} \psi\right|^{2} .
\end{aligned}
$$

What does the $[\hat{A}, \hat{B}]$ commutator tell us about

* the possibility for simultaneous eigenfunctions
* $\sigma_{\mathrm{A}} \sigma_{\mathrm{B}}$?

1. If $[\hat{A}, \widehat{B}]=0$, then all non-degenerate eigenfunctions of \hat{A} are eigenfunctions of \widehat{B} (see page 10).
2. If $[\hat{A}, \hat{B}]=$ const $\neq 0$

$$
\begin{aligned}
\sigma_{A}^{2} \sigma_{B}^{2} \geq-\frac{1}{4}\left(\int d x \psi *[A, B] \psi\right)^{2}>0 \text { (and real) } \\
\\
\text { note that }[\hat{x}, \hat{p}]=i \hbar
\end{aligned}
$$

this gives

$$
\sigma_{p_{x}} \sigma_{x} \geq \frac{\hbar}{2}(\text { see page } 11)
$$

Suppose 2 operators commute

$$
[\hat{A}, \hat{B}]=0
$$

Consider the set of wavefunctions $\left\{\psi_{i}\right\}$ that are eigenfunctions of observable quantity \widehat{A}.

$$
\begin{aligned}
& \hat{A} \psi_{i}=a_{i} \psi_{i}\left\{a_{i}\right\} \text { are real } \\
& 0=\int d x \psi_{j}^{*}[\widehat{A}, \widehat{B}] \psi_{i}=\int d x \psi_{j}^{*}(\hat{A} \widehat{B}-\widehat{B} \widehat{A}) \psi_{i} \\
&=\int d x \psi_{j}^{*} \hat{A} \widehat{B} \psi_{i}-\int d x \psi_{j}^{*} \widehat{B} \widehat{A} \psi_{i} \\
&=a_{j} \int d x \psi_{j}^{*} \widehat{B} \psi_{i}-a_{i} \int d x \psi_{j}^{*} \widehat{B} \psi_{i} \\
&=\left(a_{j}-a_{i}\right) \int d x \psi_{j}^{*} \widehat{B} \psi_{i} \\
& 0=\left(a_{j}-a_{i}\right) \int d x \psi_{j} \widehat{B} \psi_{i} \\
& B_{j i}
\end{aligned}
$$

if $a_{j} \neq a_{i} \rightarrow B_{j i}=0 \quad$ this implies that ψ_{i} and ψ_{j} are eigenfunctions of \hat{B} that belong to different eigenvalues of \hat{B}
if $a_{j}=a_{i} \rightarrow B_{j i} \neq 0 \quad$ This implies that we can construct mutually orthogonal eigenfunctions of \hat{B} from the set of degenerate eigenfunctions of \hat{A}.

All nondegenerate eigenfunctions of \hat{A} are eigenfunctions of \hat{B} and eigenfunctions of \widehat{B} can be constructed out of degenerate eigenfunctions of \hat{A}.

Some important topics:

0. Completeness.
1. For a Hermitian Operator, all non-degenerate eigenfunctions are orthogonal and the non-degenerate ones can be made to be orthonormal.
2. Schmidt orthogonalization
3. Are eigenfunctions of \hat{A} eigenfunctions of \hat{B} if $[\hat{A}, \hat{B}]=0$?
4. $[\hat{A}, \widehat{B}] \neq 0 \Rightarrow$ uncertainty principle free of any thought experiments.
5. Why do we define \hat{p} as $-i \hbar \frac{\partial}{\partial x}$?
6. Express non-eigenstate as linear combination of eigenstates.
7. Completeness. Any arbitrary ψ can be expressed as a linear combination of functions that are members of a "complete basis set."

For a particle in box

$$
\begin{aligned}
\Psi_{n} & =\left(\frac{2}{a}\right)^{1 / 2} \sin \left(\frac{n \pi}{a} x\right) \\
E_{n} & =n^{2} \frac{h^{2}}{8 m a^{2}}
\end{aligned}
$$

complete set $\mathrm{n}=1,2, \ldots \infty$ What do we call these ψ_{n} in a non-QM context?

$$
\psi=\sum_{i} c_{i} \psi_{i}, \quad c_{i}=\int d x \psi_{i}^{*} \psi
$$

To obtain the set of $\left\{c_{\mathrm{i}}\right\}$, left-multiply ψ by Ψ_{i}^{*} and integrate. Exploit orthonormality of the basis set $\left\{\psi_{i}\right\}$.

Fourier series: any arbitrary, well-behaved function, defined on a finite interval ($0, a$), can be decomposed into orthonormal Fourier components.

$$
f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{a}+b_{n} \sin \frac{n \pi x}{a}\right) .
$$

For our usual $\psi(0)=\psi(a)=0$ boundary conditions, all of the $a_{n}=0$. We can use particle in box functions $\left\{\psi_{n}\right\}$ to express any ψ where $\psi(0)=\psi(a)=0$. Another kind of boundary condition is periodic (e.g. particle on a ring) $\psi(x+a)=\psi(x)$ where a is the circumference of the ring. Then, for the $0 \leq x \leq a$ interval, we need both sine and cosine Fourier series.

1. Hermitian Operator

If \widehat{A} is Hermitian, all of the non-degenerate eigenstates of \widehat{A} are orthogonal and all of the degenerate ones can be made orthogonal.

If \hat{A} is Hermitian

$$
\int d x \psi_{i}^{*} \underbrace{\widehat{A} \psi_{j}}_{a_{j} \psi_{j}}=\int d x \psi_{j} \underbrace{\widehat{A}^{*} \psi_{i}^{*}}_{a_{i}^{*} \psi_{i}^{*}}
$$

$$
\begin{aligned}
& a_{i}^{*}=a_{i} \text { because } \widehat{A} \\
& \text { corresponds to a } \\
& \text { classically } \\
& \text { observable quantity }
\end{aligned}
$$

rearrange

$$
\begin{aligned}
& \left(a_{j}-a_{i}\right) \int d x \psi_{i}^{*} \psi_{j}=0 \\
& \text { order of these } \\
& \text { doesn't matter }
\end{aligned}
$$

either $a_{j}=a_{i}($ degenerate eigenvalue)
OR
when $a_{j} \neq a_{i} \psi_{i}$ is orthogonal to ψ_{j}.
Now, when ψ_{i} and ψ_{j} belong to a degenerate eigenvalue, they can be made to be orthogonal, yet remain eigenfunctions of \hat{A}.

$$
\hat{A}\left(\sum_{i} c_{i} \psi_{i}\right)=a_{j}\left(\sum_{i} c_{i} \psi_{i}\right)
$$

for any linear combination of degenerate eigenfunctions.
Find the correct linear combination. Easy to get a computer to find these orthogonalized functions.

Non-Lecture

2. Schmidt orthogonalization

We can construct a set of mutually orthogonal functions out of a set of non-orthogonal degenerate eigenfunctions.

Consider two-fold degenerate eigenvalue a_{1} with non-orthogonal eigenfunctions, ψ_{11} and ψ_{12}. Construct a new pair of orthogonal eigenfunctions that belong to eigenvalue a_{1} of \hat{A}.

$$
\begin{aligned}
\text { overlap } S_{11,12} & =\int \psi_{11}^{*} \psi_{12} \\
\psi_{11}^{\prime} & \equiv \psi_{11} \\
\psi_{12}^{\prime} & \equiv N\left[\psi_{12}-S_{11,12} \psi_{11}\right]
\end{aligned}
$$

Check for orthogonality:

$$
\begin{aligned}
\int d x \psi_{11}^{\prime *} \psi_{12}^{\prime} & =N\left[\int d x \psi_{11}^{*} \psi_{12}-S_{11,12} \int d x \psi_{11}^{*} \psi_{11}\right] \\
& =N\left[S_{11,12}-S_{11,12}\right]=0 .
\end{aligned}
$$

Find normalization constant:

$$
\begin{aligned}
1 & =\int d x \psi_{12}^{\prime *} \psi_{12}^{\prime} \\
& =|N|^{2}\left[\begin{array}{r}
\int d x \psi_{12}^{*} \psi_{12}+\left|S_{11,12}\right|^{2} \int d x \psi_{11}^{*} \psi_{11} \\
\left.\quad-\int d x \psi_{12}^{*} S_{11,12} \psi_{11}-\int d x S_{11,12}^{*} \psi_{11}^{*} \psi_{12}\right] \\
\end{array}\right. \\
& =|N|^{2}\left[1+\left|S_{11,12}\right|^{2}-\left|S_{11,12}\right|^{2}-\left|S_{11,12}\right|^{2}\right] \\
& =|N|^{2}\left[1-\left|S_{11,12}\right|^{2}\right] \\
N & =\left[1-\left|S_{11,12}\right|^{2}\right]^{-1 / 2} \\
\psi_{12}^{\prime} & =\left[1-\left|S_{11,12}\right|^{2}\right]^{-1 / 2}\left[\psi_{12}-S_{11,12} \psi_{11}\right]
\end{aligned}
$$

Now we have a complete set of orthonormal eigenfunctions of \hat{A}. Extremely convenient and useful.

End of Non-Lecture

3. Are eigenfunctions of \hat{A} also eigenfunctions of \hat{B} if $[\hat{A}, \hat{B}]=0$?

$$
\begin{aligned}
& \hat{A} \hat{B}=\hat{B} \hat{A} \\
& \hat{A}\left(\hat{B} \psi_{i}\right)=\widehat{B}\left(\hat{A} \psi_{i}\right)=a_{i}\left(\hat{B} \psi_{i}\right)
\end{aligned}
$$

thus $\hat{B} \psi_{i}$ is eigenfunction of \hat{A} belonging to eigenvalue a_{i}. If a_{i} is non-degenerate, $\widehat{B} \psi_{i}=c \psi_{i}$, thus ψ_{i} is also an eigenfunction of \hat{B}.

We can arrange for one set of functions $\left\{\psi_{i}\right\}$ to be simultaneously eigenfunctions of \hat{A} and \widehat{B} when $[\hat{A}, \widehat{B}]=0$.

This is very convenient. For example: n_{x}, n_{y}, n_{z} for 3 D box and eigenvalues of $\widehat{J^{2}}$ and $\widehat{J_{z}}$ for rigid rotor. Another example: 1D box has non-degenerate eigenvalues. Thus every eigenstate of \hat{H} is an eigenstate of a symmetry operator that commutes with \hat{H}.
4. $[\hat{A}, \widehat{B}] \neq 0 \Rightarrow$ uncertainty principle free of any thought expt.

Suppose 2 operators do not commute

$$
[\hat{A}, \widehat{B}]=\widehat{C} \neq 0
$$

It is possible (we will not do it) to prove, for any Quantum Mechanical state ψ

$$
\sigma_{A}^{2} \sigma_{B}^{2} \geq-\frac{1}{4}\left(\int d x \psi * \widehat{C} \psi\right)^{2} \geq 0
$$

Consider a specific example:

$$
\begin{aligned}
& \hat{A}=\hat{x} \\
& \hat{B}=\hat{p}_{x}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\hat{x}, \hat{p}_{x}\right] f(x) }=\hat{x} \hat{p}_{x} f-\hat{p}_{x} \hat{x} f \\
&=x(-i \hbar) \frac{\partial}{\partial x} f-(-i \hbar) \frac{\partial}{\partial x}(x f) \\
&=(-i \hbar)\left[x f^{\prime}-f-x f^{\prime}\right] \\
&=+i \hbar f \\
& \therefore \quad\left[\hat{x}, \hat{p}_{x}\right]=+i \hbar{\underset{\underbrace{}}{t}}_{\Downarrow}^{\Downarrow} \\
& \text { unit } \\
& \text { operator }
\end{aligned}
$$

so the above (unproved) theorem says

$$
\begin{aligned}
& \sigma_{x}^{2} \sigma_{p_{x}}^{2} \geq-\frac{1}{4}[i \hbar \underbrace{\int d x \psi^{*} \psi}_{=1}]^{2}=-(-1) \frac{\hbar^{2}}{4} \\
& \sigma_{x} \sigma_{p} \geq+\frac{\hbar}{2} \quad \text { Heisenberg uncertainty principle }
\end{aligned}
$$

This is better than a thought experiment because it comes from the mathematical properties of operators rather than being based on how good one's imagination is in defining an experiment to measure x and p_{x} simultaneously.

Non-Lecture

5. Why do we define \hat{p} as $\hat{p}=-i \hbar \frac{\partial}{\partial x}$?

Is the $-i$ needed? Why not $+i$?
$\langle\hat{p}\rangle=-i \hbar \int_{-\infty}^{\infty} d x \psi * \frac{d}{d x} \psi$
which must be real, $\langle\hat{p}\rangle=\langle\hat{p}\rangle^{*}$. But is it?

thus $\langle p\rangle=\langle p\rangle^{*}, i$ is needed in \hat{p}.
i vs. $-i$ is an arbitrary phase choice, supported by a physical argument.
Suppose we have

$$
\begin{aligned}
& \psi=e^{i k x} \\
& \hat{p} \psi=-i \hbar(i k) e^{i k x}=+\hbar k e^{i k x}
\end{aligned}
$$

we like to associate $\langle\hat{p}\rangle$ with $+\hbar k$ rather than $-\hbar k$.
6. Suppose we have a non-eigenstate ψ for the particle in a box
for example,

Normalize this

$$
\begin{aligned}
& \qquad \int_{0}^{a} d x \psi^{*} \psi=1=N^{2} \int_{0}^{a} d x x^{2}(x-a)^{2}(x-a / 2)^{2} \\
& \text { find that } N=\left(\frac{840}{a^{7}}\right)^{1 / 2}
\end{aligned}
$$

Now expand this function in the $\psi_{n}=\left(\frac{2}{a}\right)^{1 / 2} \sin \frac{n \pi x}{a}$ basis set.

$$
\psi=\sum_{n=1}^{\infty} c_{n} \psi_{n} \text { find the } c_{n}
$$

Left multiply by ψ_{m}^{*} and integrate

$$
\begin{gathered}
\int d x \psi_{m}^{*} \psi=\sum_{n=1}^{\infty} c_{n} \int d x \underbrace{\psi_{m}^{*}}_{\text {orthogonal }} \psi_{n}^{*}=c_{m} \\
c_{m}=(840)^{1 / 2} a^{-7 / 2}\left(\frac{2}{a}\right)^{1 / 2} \int_{0}^{a} d x \underset{\substack{\text { odd with respect to } \\
0, a \text { interval }}}{x(x-a)(x-a / 2)} \sin \frac{m \pi x}{a} \\
\begin{array}{c}
\text { needs to be } \\
\text { odd on } 0, a \\
\text { too in order } \\
\text { to have an } \\
\text { even } \\
\text { integrand }
\end{array} \\
\end{gathered}
$$

thus $c_{m}=0$ for all odd $-m$

$$
\begin{aligned}
& m=2 n-1 \quad n=1,2, \ldots \\
& c_{2 n-1}=0 \\
& c_{2 n} \neq 0 \text { find them }
\end{aligned}
$$

$$
c_{2 n}=\frac{(1680)^{1 / 2}}{a^{4}} \int_{0}^{a} d x\left(x^{3}-\frac{3}{2} a x^{2}+\frac{a^{2}}{2} x\right) \sin \frac{2 n \pi x}{a}
$$

change variables $y=\frac{2 n \pi x}{a}$

$$
=\frac{1680^{1 / 2}}{a^{4}} \int_{0}^{2 n \pi} d y\left[\left(\frac{a}{2 n \pi}\right)^{3} y^{3}-\frac{3}{2} a\left(\frac{a}{2 n \pi}\right)^{2} y^{2}+\frac{a^{2}}{2}\left(\frac{a}{2 n \pi}\right) y\right]\left(\frac{a}{2 n \pi}\right) \sin y
$$

steps skipped

$$
\begin{aligned}
& c_{2 n}=1680^{1 / 2} \frac{6}{(2 n \pi)^{3}}=0.9914 n^{-3} \\
& c_{2} \approx 1 \text { as expected from general shape of } \psi .
\end{aligned}
$$

Now that we have $\left\{c_{n}\right\}$, we can compute $\langle E\rangle=\int d x \psi * \widehat{H} \psi=\sum_{\substack{n=1 \\ \text { probb } \\ \text { ability }}}^{\infty}{\underset{n}{n}}^{P_{n}}$

$$
P_{n}=c_{n}^{2}
$$

$$
\begin{aligned}
\langle E\rangle & =\sum_{n=1} E_{2 n}\left|c_{2 n}\right|^{2}=E_{1} \sum_{n=1}^{\infty}(2 n)^{2}\left[0.9914 n^{-3}\right]^{2} \\
& =4 E_{1}(0.983) \sum_{n=1}^{\infty} n^{-4} \approx 4 E_{1} \quad \begin{array}{l}
\text { (Is this a surprise for a } \\
\text { function constructed to } \\
\text { resemble } \psi_{2} \text { where } \mathrm{E}_{2}= \\
4 \mathrm{E}_{1} ? \text {) }
\end{array}
\end{aligned}
$$

End of Non-Lecture

MIT OpenCourseWare
http://ocw.mit.edu

5.61 Physical Chemistry

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

