Lecture \#13: Nonstationary States of Quantum Mechanical Harmonic Oscillator

Last time

$$
\begin{aligned}
& \hat{\tilde{x}}=\left[\frac{\mu \omega}{\hbar}\right]^{1 / 2} \hat{x} \\
& \hat{\tilde{p}}=[\hbar \mu \omega]^{-1 / 2} \hat{p} \\
& \hat{\mathbf{a}}=2^{-1 / 2}(i \hat{\tilde{p}}+\hat{\tilde{x}}) \\
& \widehat{\mathbf{a}^{\dagger}}=2^{-1 / 2}(-i \hat{\tilde{p}}+\hat{\tilde{x}}) \\
& \hat{\tilde{x}}=2^{-1 / 2}\left(\hat{\mathbf{a}}^{\dagger}+\hat{\mathbf{a}}\right) \\
& \hat{\tilde{p}}=2^{-1 / 2} i\left(\hat{\mathbf{a}}^{\dagger}-\hat{\mathbf{a}}\right) \\
& \hat{x}=\left(\frac{\hbar}{2 \mu \omega}\right)^{1 / 2}\left(\hat{\mathbf{a}}^{\dagger}+\hat{\mathbf{a}}\right) \\
& \hat{p}=\left(\frac{\hbar \mu \omega}{2}\right)^{1 / 2} i\left(\hat{\mathbf{a}}^{\dagger}-\hat{\mathbf{a}}\right)
\end{aligned}
$$

most important

$$
\begin{aligned}
& \hat{\mathbf{a}} \psi_{v}=[v]^{1 / 2} \psi_{v-1}, \text { e.g. } \hat{\mathbf{a}}^{3} \psi_{v}=[v(v-1)(v-2)]^{1 / 2} \psi_{v-3} \\
& \hat{\mathbf{a}}^{\dagger} \psi_{v}=[v+1]^{1 / 2} \psi_{v+1}, \text { e.g. } \widehat{\mathbf{a}}^{10} \psi_{v}=[(v+10) \ldots(v+1)]^{1 / 2} \psi_{v+10}
\end{aligned}
$$

What is so great about $\hat{\mathbf{a}}, \hat{\mathbf{a}}^{\dagger}$?
Born with selection rule and values of all integrals attached!

$$
\int d x \psi_{\mathrm{v}}^{*}\left(\hat{\mathbf{a}}^{\dagger}\right)^{m}(\hat{\mathbf{a}})^{n} \psi_{v+n-m}=[\underbrace{(v+n-m)(v+n-m-1) \ldots(v-m+1)(v-m+1) \ldots(v-1)(v)}_{n \text { terms }} \underbrace{(v \text { terms }} \underbrace{1 / 2}
$$

$$
\left(\hat{\mathbf{a}}^{\dagger}\right)^{m}(\hat{\mathbf{a}})^{n} \rightarrow v_{f}-v_{i}=m-n
$$

Suppose you want $\int d x \psi_{v+2}^{*} \mathbf{O p} \psi_{v} \neq 0$? Then $\mathbf{O p}$ could be $\hat{\mathbf{a}}^{\dagger 2}$ or $\hat{\mathbf{a}}^{\dagger 3} \hat{\mathbf{a}}$ (in any order).
Suppose you have \hat{p}^{3} and want $\psi_{\mathrm{v}+3} \hat{p}^{3} \psi_{\mathrm{v}}$ integral? Only a total of 3 multiplicative $\hat{\mathbf{a}}$ or $\hat{\mathbf{a}}^{\dagger}$ factors possible, therefore you need only keep $\hat{\mathbf{a}}^{\dagger 3}$ term.

Today A taste of Wavepacket Dynamics.

- Coherent superposition state dephasing rephasing: partial or complete rephasing
- $\langle x\rangle_{t},\langle p\rangle_{t}$ Ehrenfest's Theorem - "center" of wavepacket follows Newton's laws.
- Tunneling through a barrier

All of this is very qualitative, but forms a transparent basis for intuition.
Imagine, at $t=0$, a state of the system is created that is not an eigenstate of \widehat{H}.

* Half harmonic oscillator
* Gaussian wavepacket (velocity $=0$) transferred by photon excitation from one potential energy curve to another electronic state potential curve at a value of x where $\frac{d V_{\text {excied }}}{d x} \neq 0$
* molecule created in "wrong" vibrational state (i.e. a vibrational eigenstate of the neutral molecule is not a vibrational eigenstate of the ion) by sudden photoionization

What happens?
Insights come from a special class of problem where the energy levels have the special property:

$$
\mathrm{E}_{\mathrm{n}}=(\text { integer }) \mathrm{E}_{\text {common factor }}
$$

particle in box $\quad E_{n}=E_{1} n^{2}$
harmonic oscillator $E_{n}=E_{0}+n \hbar \omega=\frac{\hbar \omega}{\frac{E_{0}}{2}}(2 n+1)$

$$
\begin{aligned}
& \Psi(x, 0)=\sum_{n} c_{n} \psi_{n}(x) \\
& \Psi(x, t)=\sum_{n} c_{n} \Psi_{n}(x) e^{-i E_{n} t / \hbar} \quad \begin{array}{|c}
\text { assume all }\left\{\psi_{n}\right\} \text { and }\left\{c_{n}\right\} \text { are real } \\
\end{array} \\
& \text { The probability density is } \\
& \begin{array}{l}
P(x, t) \equiv \Psi *(x, t) \Psi(x, t)=\sum_{n, m} c_{n} c_{m} \psi_{n} \psi_{m}\left(e^{-i\left(E_{n}-E_{m}\right) t / \hbar}\right) \\
=\sum_{n} c_{n}^{2} \psi_{n}^{2}+\sum_{n \neq m} c_{n} c_{m} \psi_{n} \psi_{m}\left(e^{-i\left(E_{n}-E_{m}\right) t / \hbar}\right)
\end{array} \\
& =\sum_{n} \underset{\substack{\text { static } \\
\text { term } \\
\text { positive at all x }}}{c_{n}^{2} \psi_{n}^{2}}+\sum_{n>m} \underset{\substack{\text { oscillating term "coherence" } \\
\uparrow \\
\text { regions of + and }- \text { vs. x }}}{2 c_{n} c_{m} \psi_{n} \psi_{m} \cos \omega_{n m} t} \\
& \text { all real, not complex }
\end{aligned}
$$

$\mathrm{P}(x, t)$ must be ≥ 0 and real at all x for all t. Why?
Normalization:

$$
\int d x \Psi * \Psi=\sum_{n} c_{n}^{2}=1
$$

No time dependences, Ψ is normalized, and ψ_{n}, ψ_{m} are orthogonal. Normalization is conserved.

Note, we get rid of all x information only when we integrate over x. For example, the energy

$$
\langle\widehat{H}\rangle=\langle E\rangle=\int d x \Psi * \widehat{H} \Psi=\sum_{n} c_{n}^{2} E_{n} \quad\left\{\begin{array}{l}
\text { No time dependence of }\langle E\rangle \\
\mathrm{E} \text { is conserved. }
\end{array}\right.
$$

Look at $\mathrm{P}(x, t)$ probability distribution.
What are some special times?

If all $\omega_{n m}$ are multiples of a common factor, call it $\omega_{g r} \quad(g r=$ "grand rephasing")
when $t_{g r}=\frac{2 n \pi}{\omega} \quad \Psi\left(x, t_{g r}\right)=\Psi(x, 0)$
when

$$
\begin{array}{ll}
t_{\text {agr }}^{\substack{\text { agti- } \\
\text { grand }}} \\
\end{array}=\frac{(2 n+1) \pi}{\omega}, \quad \begin{aligned}
& \text { most of the coherence terms have opposite sign to what they had at } \\
& t=0 . \text { Usually this means that wavepacket is localized at the other } \\
& \text { side of center (i.e., } x=0) .
\end{aligned}
$$

At $\frac{t_{g r}+t_{a g r}}{2}=\frac{\pi}{2 \omega}+\frac{2 n \pi}{\omega}$, all $\psi_{n} \psi_{m}$ cross terms are $=0$, the only surviving terms are ψ_{n}^{2}, and these are + everywhere, thus the probability is distributed over the entire region.

This is the "dephased" situation. The evolution is sequential: phased up, dephased, phased "down", repeat.

Suppose you compute $\langle\hat{x}\rangle$ and $\langle\hat{p}\rangle$.

$$
\begin{aligned}
& \text { Non-Lecture } \\
& \Psi(x, t)=\sum_{n=0}^{n_{\text {max }}} c_{n} \psi_{n} e^{-i E_{n} t / \hbar} \\
& \Psi^{*} \Psi=\sum_{n=0}^{n_{\text {max }}} \sum_{m=0}^{m_{\text {max }}} c_{n} c_{m} \psi_{n} \psi_{m} e^{-i \omega_{m m} t} \\
& =\sum_{n=0}^{n_{\text {max }}} c_{n}^{2} \psi_{n}^{2}+\sum_{n, m>n}^{m_{\text {max }}} c_{n} c_{m} \psi_{n} \psi_{m}\left[e^{-i \omega_{m n} t}+e^{i \omega_{m n} t}\right] \\
& =\sum_{n=0}^{n_{\text {max }}} c_{n}^{2} \psi_{n}^{2}+\sum_{m>n}^{m_{\text {max }}} c_{n} c_{m} \psi_{n} \psi_{m}\left(2 \cos \omega_{m n} t\right) \\
& \langle\hat{x}\rangle_{t}=\int d x \Psi^{*} \hat{x} \Psi \quad \widehat{0}^{\downarrow}+\sum_{n=0} 2 c_{n} c_{n+1} \cos \omega t \int d x \psi_{n} \hat{x} \psi_{n+1} \\
& \int d x \psi_{n} \hat{x} \psi_{n+1}=\left(\frac{\hbar}{2 \mu \omega}\right)^{1 / 2}[n+1]^{1 / 2} \\
& \langle\hat{x}\rangle_{t}=2\left(\frac{\hbar}{2 \mu \omega}\right)^{1 / 2} \cos \omega t\left[\sum c_{n} c_{n+1}(n+1)^{1 / 2}\right] \\
& =A \cos \omega t
\end{aligned}
$$

A similar analysis for $\left\langle\hat{p}_{x}\right\rangle_{t}$ gives $B \sin \omega t$.
For HO, there are especially simple selection rules for \hat{x} and \hat{p} : the $\psi_{\mathrm{v}_{f}}^{*} \psi_{\mathrm{v}_{i}}$ integrals follow the $\Delta v= \pm 1$ selection rule.

There is no variation of ω with E for Harmonic Oscillator.
All of the coherence terms in HO give

$$
\begin{aligned}
& \langle x\rangle_{t} \propto \mathrm{~A} \cos \omega \mathrm{t} \\
& \langle p\rangle_{t} \propto \mathrm{~B} \sin \omega \mathrm{t}
\end{aligned}
$$

Does this look familiar?
Just like classical HO

$$
\left.\begin{array}{c}
\frac{d}{d t}\langle x\rangle=\frac{1}{m}\left\langle p_{x}\right\rangle \\
v=p / m \\
\frac{d}{d t}\left\langle p_{x}\right\rangle=-\langle\nabla V(x)\rangle \\
m a=F
\end{array}\right] \text { Ehrenfest's Theorem } \quad\binom{\text { here, } v \text { is velocity, not }}{\text { vibrational quantum number }}
$$

Center of wavepacket moves according to Newton's equations!
Tunneling

For a thin barrier, all ψ_{v} with node in middle (odd v) hardly feel barrier. They are shifted to higher E only very slightly.

The ψ_{v} with a maximum at $x=0$ (even v) all feel the barrier very strongly. They are shifted up almost to the energy of next higher level, if the energy of $\mathrm{HO} \psi_{v}$ lies below top of barrier.

Why do I say that the barrier causes all HO energy levels to be shifted up?
[We will return to this problem once we have discovered non-degenerate perturbation theory.]

We see some evidence for this difference in energy shifts for odd vs. even-v levels by thinking about $1 / 2 \mathrm{HO}$.

This half-HO oscillator only has levels at E_{1}, E_{3} of the full oscillator so $v=0$ of $1 / 2$ oscillator is at the energy of $v=1$ of the full oscillator.

So a barrier causes even-v levels to shift up a lot relative to the next higher odd-v level.

$$
\begin{gathered}
\Psi *(x, t) \Psi(x, t)=c_{0}^{2} \Psi_{0}^{2}+c_{1}^{2} \Psi_{1}^{2}+2 c_{1} c_{2} \psi_{0} \Psi_{1} \cos \Delta_{01} t \\
\Delta_{0,1}=\frac{E_{1}-E_{0}}{\hbar} \quad\left(\Delta_{0,1} \text { is small }\right)
\end{gathered}
$$

What does $\psi_{\mathrm{v}}=0$ eigenstate look like?

shifted slightly up in E but ψ is hardly distorted.

Zero nodes (tried but barely fails to have one node). It resembles the $v=1$ state of no-barrier oscillator.
$\Psi_{1,0}(x, 0)=2^{-1 / 2}\left[\psi_{1}(x)+\psi_{0}(x)\right]$ looks like this at $t=0$

$\Psi_{1,0}^{*}(x, t) \Psi_{1,0}(x, t)=\frac{1}{2} \psi_{0}^{2}+\frac{1}{2} \psi_{1}^{2}+\psi_{1} \psi_{0} \cos \Delta_{0,1} t$
We get oscillation of nearly perfectly localized wavepacket right - left - right ad infinitum.

* $\Delta_{0,1}$ is small so period of oscillation is long (it is the energy difference between the $v=0$ and $v=1$ eigenstates of the harmonic plus barrier potential)

Similarly for 3,2 wavepacket.

[^0]MESSAGE: As you approach top of barrier, tunneling gets faster.

Tunneling is slow (small splittings of consecutive pairs of levels) for high barrier, thick barrier, or at E far below top of barrier.

Can use pattern of energy levels ($\Delta_{0,1}$ and $\Delta_{2,3}$) observed in a spectrum (frequency-domain) to learn about time-domain phenomena (tunneling). Also determine shape of the barrier.
"Dynamics in the frequency-domain."

MIT OpenCourseWare
http://ocw.mit.edu

5.61 Physical Chemistry

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: * left/right localization is less perfect
 * oscillation is faster because $\Delta_{2,3}$ is larger

