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Lecture #18: Non-Degenerate Perturbation Theory III 

What is Perturbation Theory good for? 

1.	 Computing the effects (pattern of energy levels, relative transition intensities in a 
spectrum, intramolecular dynamics) of a distortion of the potential energy 
function from an idealized form. 
* add a barrier to particle in a box or harmonic oscillator 
* include intra-mode vibrational anharmonicity (wave packet dynamics, effects on 

molecular constants ωe, ωexe) 
* include inter-mode vibrational anharmonicity (IVR, spectroscopic perturbations, 

non-radiative decay) 

2.	 Computing the mechanism for the flow of energy between different internal 
degrees of freedom is encoded in the energy level structure. 

3.	 Computing how the internuclear distance dependence of a molecular property is 
manifest in the experimentally observable quantum number dependence of that 
quantity. One example, the subject of this lecture, is the rotational “constant” 
operator, B(R). 

Centrifugal Distortion (D) and Vibration-Rotation Interaction (αα) 
Constants 

E(v, J ) = hc[B −αe (v +1/ 2)]J (J +1) − hcD [J (J +1)]2 
e e e 

This lecture will illustrate two surprising tricks exploited by spectroscopists: 

•	 It is possible, by observing the “pure rotation” spectrum (microwave spectroscopy) to 

measure a rotational quantity, the centrifugal distortion constant De, that provides an 

accurate measure of the harmonic vibrational frequency, ωe. 


•	 When the vibrational potential energy function, V(Q), is expanded in a power series in 
the displacement coordinate, Q, perturbation theory seems to tell us that we cannot 
determine the sign of the coefficients of odd powers of Q. However, we can often obtain 
this sign from a cross term between rotation and vibration. 

The effective potential is given by 
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V Q
1

kQ2 + 
1

aQ3 + hcB(R)J (J +1)( ) = 
2 6 

First we must express B(R) as a power series in Q. (This is an example of how we would 
determine the dependence of any R-dependent quantity on the vibrational quantum number, v.) 

n 1 −1B(R) = 
R2 [cm ]

2cμ 

⎡ ⎤
1/2 

−1ω = 
1 k [ ]e ⎢ ⎥ cm

2πc ⎣ μ⎦

1 1
R ≡ Q + Re do a power series expansion of = 

R2 
R2 (1+Q R )2 

e e 

⎡ 2Q 3Q2 ⎤
B(Q) = B 1− + +…e ⎢ 2 ⎥R R⎣ e e ⎦

⎡ n ⎤
1/2 

†Q = ( )⎢ ⎥ a + a4πμcω⎣ e ⎦

1/2 1/2 
2Q ⎡ 4h ⎤ ⎛ 4Be ⎞ ⎫ 

= ⎢ 2 ⎥ (a + a† ) = ⎜ ⎟ (a + a† )⎪
R 4πcμω R ⎝ ω ⎠ ⎪e ⎣ e e ⎦ e 

⎬from B(Q) 
3Q2 3B

† 
2 = e (a + a )2 ⎪ 

⎪R ωe e ⎭ 

1 a ⎡ h ⎤
3/2 

† )3 † )3aQ3 = (a + a = A(a + a from V(Q)⎢ ⎥6 6 4πcμω⎣ e ⎦
absorb all of these constants
 
temporarily into the fit
 
parameter, A
 

A is a constant, the sign of which is the same as that of a in aQ3. 

We are ready to begin to treat this problem by perturbation theory. 
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(0 )  vJ | H(0 )  | vJ = hcωe (v +1/  2)  + hcBe J (J +1)EvJ =
 

1/2
 

H(1) 
⎡ ⎛ 4Be ⎞ 3B ⎤ 

= hcBe J (J +1)⎢−⎜ ⎟ (a + a† )+ e (a + a† )2 ⎥ + A(a + a† )3 

⎝ ω ⎠ ω⎣ e e ⎦ 
Δ v  = ±1 Δ v  = 0, ±2 Δ v = ±1, ±3 

(1)We begin by computing Evj : 

⎡ 3B ⎤(1) vJ | H(1) | vJ = hcBe J (J +1) 
ω

(2Nv +1) (from Δ v = 0)EvJ = ⎢ 
e 

⎥⎣ e ⎦
6B(1) eEvJ = hcBe J (J +1) (v +1/  2) 

ωe
 

6Be
2 

αe = −  .
ωe 

This is the harmonic contribution to the vibration-rotation constant, αe. Note that αe < 0, thus Bv 

increases as (v + ½). We expect the vibrational excitation would on average lengthen R, thus 
cause Bv to decrease with v. But the harmonic contribution exhibits the opposite behavior. 
WHY? 

Now we look at the effects of the Δv ≠ 0 matrix elements on EvJ. 

Δv = ±1 matrix elements, from both (a + a†) and (a + a†)3 terms in H(1): 

= (v +1)1/2v (a + a† ) v +1 

v (a + a† ) v −1 = v1/2
 

3 †3 2 †2
(a + a† )3 = a + a + 3( a† − ) + 3( a + a† )3 3 3 aaa aa 3 aaaa aa 
Δ v=−3 Δ v=+3 Δ v=−1 Δ v=+1 

= 3(v +1)3/2† )3v v +1 = v(a + a 3(a†2a + a† ) v +1 

† )3v v −1 = v(a + a 3(a2a† − a) v −1 = 3v3/2 

1/2

(2 ) ⎛ 4Be ⎞We are going to get a cross-term in EvJ between the hcBeJ(J + 1) ⎜ and A(a + a†)3
⎟⎝ ωe ⎠

terms. 

Δv = ±2 

† )2v v + 2 = [(v + 2)(v +1)]1/2
(a + a

† )2v v − 2 = [v(v −1)]1/2
(a + a
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Δv = ±3 

† )3v v + 3 = [(v + 3)(v + 2)(v +1)]1/2 
(a + a

† )3v v − 3 = [(v − 2)(v −1)v ]1/2 
(a + a

Some algebra: 

(2 )  2 ⎛ 4Be ⎞ ⎡ v +1 v ⎤
Evj = [hcBeJ(J +1)] ⎜ ⎟ ⎢ + ⎥⎝ ω ⎠ −hcω hcωe ⎣ e e ⎦

1/2 

]⎛ 4B ⎞
1/2 ⎡ 3(v +1)3/2 (v +1)1/2 3(v)3/2 v ⎤

−2[hcBeJ(J +1) ⎜ 
e 
⎟ A ⎢ + ⎥⎝ ωe ⎠ ⎣ −hcωe hcωe ⎦

⎡ (v +1)3 v3 ⎤ 
+A2 9 +⎢ ⎥−hcω hcω⎣ e e ⎦

2 ⎛ 3Be ⎞
2 
⎡ (v + 2)(v +1) v(v −1) ⎤+[hcBeJ(J +1)] ⎜ ⎟ ⎢ + ⎥⎝ ω ⎠ −2hcω 2hcωe ⎣ e e ⎦

⎡ (v + 3)(v + 2)(v +1) (v − 2)(v −1)v ⎤+A2 +⎢ ⎥−3hcω 3hcω⎣ e e ⎦

3/2 3 
(2 )  = −hc 

4Be ⎛ Be ⎞[J(J +1)]2 + 24 AJ(J +1)(v +1/  2)  EvJ 2 ⎜ ⎟ωe ⎝ ωe ⎠

9A2 ⎡ 1 ⎤− (v +1/  2)2 +⎢ ⎥hcωe ⎣ 4 ⎦
Be

4 ⎡ 1 ⎤−hc [J(J +1)]2 9 (v +1/  2)  +3 ⎢ ⎥ωe ⎣ 2 ⎦
A2 ⎡ 5 ⎤− 3(v +1/  2)2 + .⎢ ⎥hcωe ⎣ 4 ⎦
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(Kratzer equation) 

−  B B −α (v +1/  2( ) A < 0( )α (v +1 / 2) A < 0( )( 1 / 2) ( ) 

Note that A is not squared! 
So we sample its sign. 

(Kratzer er quation) 

A 
Be⎛ ⎞

3/2 
6B e 

2 

B B α( α 

Thus 
4B3 

D = e 
e ω2
 

e
 

α = −24Ae	 ⎜ ⎟ v e e⎝ ωe ⎠ ωe

12A2 

ωexe =
 
ωe
 

9Be
4 

β = − (D = D +β (v +1/  2))e 3 v e e
ωe
 

Note that, if A < 0, then αe > 0 and Bv decreases as v increases. For A < 0, the cubic term causes 
the potential energy curve to have the physically expected asymmetry. What is that? 

Non-degenerate perturbation theory is a tool that no experimental spectroscopist can live 
without. It provides surprising and useful inter-relationships between observable quantities. It 
permits honing of intuition. It provides the observable consequences of every imaginable 
departure from ideality. It explains why experimentalists and theorists often “fail to 
communicate” because they use the same symbol to refer to physically different quantities. 
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