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HYDROGEN ATOM 
Consider an arbitrary potential U(r)  that only depends on the distance 

between two particles from the origin. We can write the Hamiltonian simply 
�2

H = − ∇2 +U r( ) 
2μ  

One interesting potential of this type arises for hydrogen-like atoms.  In this 
situation, we picture a nucleus of charge +Z sitting at the origin with a single 
electron orbiting it.  This exemplifies H, He+, Li2+…. In this case, the only potential 
is due to the Coulomb attraction between the nucleus and the electron 

−Ze2

U (r) =  
4πε  0r

which depends only on the distance of the electron from the origin. This situation 
has obvious importance for the description of atoms, so we’ll study the potential in 
detail. Note that if the nucleus was infinitely more massive than the electron 
(which is nearly true), then, μ = me .  In practice, we will make this infinite mass 
approximation for convenience.   
 

Atomic units and their SI equivalents 
 
Quantity   Natural unit    SI equivalent 
 

Electron mass     m = 1     9.11x10−31  kg     
Charge    e = 1     1.06x10−19  C      
Angular momentum    � = 1     1.05x10−34  J ⋅ s    

-1 C2 ⋅ J-1 ⋅ mPermittivity   κ = 4πε = 1    1.11x10−10     0 0
2�2Length    κ 0 me = a0 = 1   (bohr)   5.29x10−11  m       

    (Bohr radius) 
4 2�2 2Energy    me κ 0 = e κ 0a0 = 1   (hartree)  4.36x10−18  J = 27.2 eV       

    (twice the ionization energy of H) 
2�3 4Time    κ 0 me = 1     2.42x10−17  s       

    (period of an electron in the first Bohr orbit) 
2Speed    e κ 0� = 1    2.19x10  m/s        

    (speed of an electron in the first Bohr orbit) 
3 2�2 2Electric potential   me κ 0 = e κ 0a0 = 1  27.21 V      

    (potential energy of an electron in the first Bohr orbit) 

Magnetic dipole moment  e� m = 1    1.85x10−23  J ⋅ T-1       
    (twice a Bohr magneton) 
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First, we can simplify our equations by choosing our units in a clever way. 
Typically, one chooses a unit of length (say a meter) and a unit of mass (kilgram) 
and time (second) based on a convenient convention.  These choices determine the 
dimensions of all computed quantities.  Thus, in meter-kilogram-second units, the 
unit of energy is the Joule. We could instead of length and unit of mass to be 
something else.  In atomic units, one chooses the units of length, mass and time so 
that   � = m = e = 1. Choosing our units in this way, the relatively unimportant factors 
of �  and m  disappear from our equations, making the algebra much simpler to 
follow. In the end, once we have calculated an observable (such as the position) we 
will need to convert the result to a set of standard units (such as meters).  The 
table above includes the atomic units for every conceivable observable.  

 
Thus, in atomic units: 

∇2 1H = − + U r( ) −1 ∂ ∂2 1 ∂ ∂= 2 r2 ∂( + +
2 r ∂r ∂r sin2 θ ∂φ 2 sinθ ) + U r

2 sinθ ∂θ ∂θ ( )  

where the second equality just reinforces the gory details wrapped up in the 
Laplacian operator. At this point we notice that L2 plays a conspicuous role in the 
Hamiltonian: 

−1 ∂H =
2r2 r2 ∂ L2

+
∂r ∂r 2r2 + U r( )  

Hence, all of the angular dependence of H is contained in L2 and we immediately 
conclude that: 

[ ]H,L2 = 0 [ ]H,Lz = 0 
which means that the eigenfunctions of H  are also angular momentum 
eigenfunctions!  That is, for any fixed r , 

ψ i( )r,θ,φ ∝Y m
l ( )θ,φ  

Noting that the proportionality constant can depend on r, as well as the quantum 
numbers l and m, we can write 

ψ i( )r,θ,φ = Rm
l ( )r Y m

l ( )θ,φ  
The radial function – (Rm

l (r)) – will depend on the form of U(r) , but the angular 
parts are universal – they are just the spherical harmonics. Combining our 
expression for the spherical harmonics with the previous results, we find that the 
eigenfunctions for any central potential can be written 

ψ i( )r,θ,φ = Rm
l ( )r Pm

l ( )θ eimφ  
that is, the three dimensional wavefunction is separable into a product of three 
one dimensional wavefunctions.  This is not generally the case, and is one of the 
particularly nice properties of spherically symmetric potentials.  The radial 
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function will generally depend on the form of the potential, but it will obey the 
equation: 

⎛ −1 ∂ ∂ l l( )+ 1 ⎞ 
⎜ r2

⎝ 2r2 +
∂ ∂r 2r2 +U r( )⎟ Rm

r ⎠ l ( )r = E m
iRl ( )r  

This equation can be solved  exactly for only a few cases (the harmonic oscillator 
and the Coulomb potential are the most notable).  Notice that the eigenvalue 
equation depends on the value of l , the quantum number for L̂2 , but not m , which 

indicates the projection of the angular momentum along the z  axis.  Hence the Rm
l

’s do not actually depend on m .  Further, we anticipate the appearance of another 
quantum number (call it n ) that indexes the solutions to this radial equation.  
Hence, we replace Rm

l ( )r → Rnl ( )r  in what follows. 
 
 For the Hydrogen-like atom, then, we want the solutions of: 

⎛ −1 ∂
⎜ r2 ∂ l l( )+ 1 Z⎞ 

2 2 +
⎝ r ∂r ∂r 2r2 − ⎟ R

r ⎠ nl ( )r = EnlRnl ( )r  

Like most of the differential equations in this course, the solutions of the above 
equation were worked out centuries ago and are associated with the name 
Laguerre.  The derivation is quite lengthy and can be found in many textbooks 
(e.g. Sakurai’s Modern Quantum Mechanics) We will not reproduce it here.  
Instead, we will focus on analyzing the results.  The general solution for the 
Hydrogen atom radial functions is (σ = 2Zr /n ) 

(n − l − 1)!4Z 3 d2l+1 dn+ l

( ) =
σ

R −
nl r ( )

2 l σ −σ n+ l

(n + l)! 3
n4

e σ
dσ 2l+1 e dσ n+ l e σ  

As defined, these functions are normalized so that (don’t forget the r2 volume 
element!)  

∫
∞

dr  r 2 R* r
  nl0

( ) Rnl ( )r = 1  

The lowest few radial wavefunctions are explicitly given by: 
R10 ( )r = 2Z 3 / 2e−Zr 

R20 ( )r = ( )3 / 2Z
2 ( )Zr − 2 e−Zr / 2 

R21( )r = ( )1/ 21
24 Z 5 / 2re−Zr / 2 

We note that, in general, the radial functions decay exponentially far from the 
nucleus.  This makes sense because the electron is attracted to the nucleus, so 
that the probability of finding the electron very far away should decay quickly.  
Second, we note that as we increase the radial quantum number, n, the degree 
of the polynomial in front of the exponential increases by 1.  As we will see, this 
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leads to the expected result that for n=1 we have zero radial nodes, n=2 we 
have one …. 

 
Several other Interesting Facts: 
1) One finds that solutions only exist if l < n .  Hence, while a Hydrogenic 

atom can only have any integer angular momentum, these values are 
further restricted for fixed n .  We typically denote the l  states as ‘s’, 
‘p’, ‘d’, ‘f’, ‘g’, ’h’ … orbitals, for l=0,1,2,3,4,5….  Hence, we have 1s, 2s, 2p, 
3s, 3p, 3d, etc orbitals, but not 1d orbitals or 3f orbitals.  These 
designations are familiar to us from freshman chemistry.  Here we see 
that these seemingly arbitrary rules fall out of the Schrodinger equation: 
there simply are no solutions with l ≥ n.  This situation is analogous to 
what we have seen before: for the Harmonic oscillator, we couldn’t have 
n < 0; for angular momentum, we couldn’t have m > l .  These simply 
mathematical restrictions clearly have profound impacts on chemistry.  

1 Z 2

2) The energies of the Hydrogenic atom are En = − , which were known 
2 n2

experimentally long before Schrödinger ever came along.  The interesting 
thing here is that the energies do not depend on l !  This is a feature 
peculiar to Hydrogenic potentials and is related to an additional 
symmetry possessed by the Coulomb potential.  This is termed an 
“accidental” degeneracy of the levels.  The number of degeneracy, gn , of 
a given level increases with n as gn = ∑2l + 1 =n2.  

l<n

 
SHAPES AND SYMMETRIES OF THE ORBITALS 
As of the present writing, there is a wonderful java applet for viewing hydrogen 
orbitals available on the web (http://www.falstad.com/qmatom/). This viewer 
allows you to plot orbitals for various values of n,l,m, and rotate, zoom, change 
colors…. Feel free to visit this site and toy around with some orbitals 
 
The one thing that falls out from this analysis is that the p orbitals do not look 
like you might expect.  In freshman chemistry, we taught you that there are 
2px, 2py and 2pz orbitals that all look like dumbells oriented along the 
appropriate axis.  ψ 210  looks just like the 2pz orbital we expect, but ψ 21±1 look 
wrong.  They are both donut-shaped in the xy-plane.  Further, these orbitals are 
complex (because of the e±φ

 term)!  In order to get the 2px and 2py orbitals, we 
have to take the real and imaginary parts of ψ 21±1. Because these orbitals are 

http://www.falstad.com/qmatom/
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complex conjugates of one another, this is easily done by taking the + and – 
combinations:  

1
ψ 2px = ( ) 1

ψ 5 / 2 −Zr / 2

2 21−1 − ψ 211 = Z re sinθ cosφ  
4 2π

i ( ) 1
ψ 2py = ψ

2 21−1 + ψ 211 = Z 5 / 2re−Zr / 2 sinθ sinφ  
4 2π

This gives us some orbitals that are easier to visualize.  A similar 
transformation needs to be done to the d orbitals to render them real.  In the 
common parlance, the nlm solutions are termed spherical harmonics, while the 
linear combinations that give real functions are termed solid harmonics. 
 
It is important to note that the 2px and 2py are eigenfunctions of the hydrogen 
atom, just like ψ 21±1.  To see this, note that for 2px 

1
Hψ 2px = H ( ) 1

ψ ( )−
2 21−1 − ψ 211 = Hψ

2 21−1 Hψ 211

2 2 2  
1 ⎛ −Z −Z ⎞ −Z 1

= ⎜ ψ 21−1 − ψ 211⎟ = ( ) −Z 2

ψ
2 ⎝ 8 8 ⎠ 8 2 21−1 − ψ 211 = ψ

8 2px

with an analogous result for 2py.  Thus, 2px and 2py are eigenfunctions with the 
same eigenvalue as ψ 21±1 (-Z

2/8).  Note that the same would not have been true 
if we had taken + and – combinations of ψ 211 and ψ100  [try it and see!] because 
those two orbitals are not degenerate.  These findings illustrate a general point: 
if we make a linear combination of two degenerate eigenfunctions, we obtain 
a new eigenfunction with the same eigenvalue. 
 
As a consequence, one is free to say that the hydrogen eigenstates with n=2 and 
l=1 are either 2px, 2py and 2pz or  ψ 211,ψ 210and ψ 21−1.  The two sets of orbitals 
contain the same information.   
 
SUMMARY: TOTAL HYDROGEN ATOM WAVEFUNCTIONS   
 

ψ nlm ( )r,θ ,φ = R
 nl ( )r Y m

l θ ,φ
 ( )  

 
principle quantum number             n = 1,2,3,...   
angular momentum quantum number   l = 0,1,2,...,n − 1   
magnetic quantum number             m  = 0, ±1, ±2,..., ±l  
 

1 Z 2 −Z 2e2

ENERGY depends on n:  En = −
2 n2 =  

8πε a0n
2

0
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Total H atom wavefunctions are normalized and orthogonal: 
 

∫
2π

∫
π

∫
∞

dφ sinθdθ r 2dr  ψ *

  nlm r,θ ,φ ψ n ' l ' m ' r,θ ,φ = δ nn 'δ ll 'δ mm '  0 0 0
( ) ( )

 
Lowest few total H atom wavefunctions, for n = 1 and 2 (with σ = Zr a  0 ): 

1
n = 1      l = 0     m = 0     ψ100 ≡ ψ1s = Z 3 / 2e−Zr

π
1

n = 2      l = 0     m = 0     ψ 200 ≡ ψ 2s = Z 3 / 2(2 − Zr)e−Zr / 2

4 2π  
1

n = 2      l = 1     m = 0     ψ ≡ ψ = Z 5 / 2re−Zr / 2
210 2pz

cosθ
4 2π

∓1
n = 2      l = 1     m = ±1    ψ = Z 5 / 2

21 1 re−Zr / 2 sinθe± iφ
±

  8 π
or, using the solid harmonics, the last two p-orbitals can be written 

1 1
ψ 2px ≡ ( )ψ 21−1 − ψ 211 = Z 5 / 2re−Zr / 2 sinθ cosφ

2 4 2π
i

ψ 2
2py ≡ ( ) 1

ψ 21−1 + ψ 211 = Z 5 / re−Zr / 2 sinθ sinφ  
2 4 2π

 
HYDROGEN ATOM SPECTROSCOPY 
One of the most satisfying things about the hydrogen atom energies we 
obtained above is that they are essentially exactly right.  We know this because 
we can obtain the spectrum of an isolated H atom in vacuum and compare the  
frequencies of the spectroscopic transitions to differences in the H atom 
energy levels above.  Indeed, spectra of this type predate quantum mechanics, 
and provided immediate validation of the quantum viewpoint in the early days.   
 
The H atom has some relatively complicated selection rules. For the 1D 
harmonic oscillator and the rigid rotor, we learned that spectroscopic 
transitions only occurred between adjacent energy levels.  Thus, for the 
Harmonic oscillator we got only one transition frequency, while for the rigid 
rotor, we got a series of equally spaced transitions.  For the Hydrogen atom, it 
turns out that one can have transitions between any two values of n, without 
restriction. This results in a fairly complicated spectrum that is illustrated 
below.   
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First, we recognize that the hydrogen atom energies get closer and closer to 
one another as n gets larger.  In the spectrum, we several distinct series 
depending on the final state (n=1,n=2,n=3…) These series are each associated 
with a name (Lyman, Balmer, Paschen…) based on the person who first observed 
the relevant series.  Within a given series, we see the same bunching of lines as 
the initial value of n gets larger.  The precise positions of the experimental 
hydrogen spectral lines fit extremely well to ΔE=1/n 2 

1 -1/n 2
2 .   

Non-Lecture sketch of hydrogen atom selection rules. It is a good exercise to 
work out the selection rules for the hydrogen atom. If nothing else this gives us 
some practice working with the hydrogen atom wave functions and computing 
selection rules.  But there also may be a bit of insight here for us.  Recall that 
for any new problem, the first step in deriving selection rules is the same: we do 
integrals of the dipole moment operator between two different eigenstates of 
the Hamiltonian and try to decide when these integrals are zero (forbidden 
transitions) or nonzero (allowed transitions). Thus, we need two ingredients: 1) 
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the eigenstates and 2) the dipole moment operator. We’ve just worked out the 
eigenstates of the hydrogen atom: 

ψ nlm ( )r,θ,φ = Rnl ( )r Y m
l ( )θ,φ  

Meanwhile, the dipole moment in hydrogen arises because there are two charges 
(the proton and the electron) of charge |e| separated by a distance r. Thus, the 
dipole moment operator is just μμ=er. Thus, a given nlm→n’l’m’ transition will be 
allowed if the integral 

∞ 2π π

∫ ∫ ∫ * ( ) �
ψ nlm r,θ,φ erψ * 2

n 'l 'm ' ( )r,θ,φ sinθ dθ dφr dr  
0 0 0

Is non-zero. Now, since the dipole moment is a vector, this is technically three 
different integrals (x,y and z components).  It is tedious to do all three 
integrals. We can simplify the algebra a bit if we assume our light is polarized. 
Going back to our derivation of Fermi’s golden rule, we find that the intensity is 
actually proportional to k•• μ , where k is the vector that determines the 
polarization of our light. So if we assume our light is z-polarized (for simplicity) 
then only the z-component of r is important above and the selection rules hinge 
on: 

∞ 2π π

∫ ∫ ∫ψ * ( ) �
nlm r,θ,φ erψ * 2

n 'l 'm ' ( )r,θ,φ sinθ dθ dφr dr =
0 0 0

∞ 2π π
 

e R∫ ∫ ∫ ( )r Y m* ( )θ,φ rcosθR m '
nl l n 'l ' ( )r Yl ' ( )θ,φ sinθ dθ dφr2 dr

0 0 0

where on the second line we have re-written z in spherical polar coordinates. 
Now, the integrand is the product of some terms that depend only on r and some 
terms that depend only on θ,φ. We can thus rearrange terms to write the 
integral as a product of an r-dependent bit and a θ,φ-dependent bit: 

∞ 2π π

e Y∫ ∫ m*
l ( )

?

θ,φ cosθY m '
l ( )φ sinθ dθ dφ ∫ Rnl ( )r rRn 'l ' ( )r r2
' θ, dr≠ 0  

0 0 0

The integral will be zero if the θ,φ integral is zero or the r integral is zero. 
Thus, a transition is allowed only if both of these integrals are non-zero.  
 
The θ,φ integral is the same one we encountered looking at selection rules for 
the rigid rotor. There, we found that this integral is only non zero if: 

Δl=±1     and     Δm=0   (z-polarized light) 
Thus, the hydrogen atom inherits these same selection rules. They don’t have 
any effect on the spectrum because the different l,m levels are all degenerate.  
But they are still there.  We expect to see a 2p→1s transition, but not a 2s→1s 
transition, and this is precisely what is seen: as it turns out, 2s and 2p have ever 
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so slightly different energies due to relativistic effects (the so-called Lamb 
shift) and the 2p→1s transition is many orders of magnitude more intense than 
the 2s→1s transition. Also, note that if we had not assumed our light was z-
polarized we would have found that x- or y-polarized light produces selection 
rules: 

Δl=±1     and     Δm=±1   (x or y-polarized light) 
Thus, in the case where one does not have polarized light, one will also 
sometimes see the selection rules for hydrogen written as: 

Δl=±1     and     Δm=±1,0           (unpolarized light) 
One can rationalize these selection rules by realizing that a photon has one unit 
of angular momentum – thus in absorbing or emitting a photon the total angular 
momentum (l) must change by 1. Meanwhile, the z-projection of the photon 
angular momentum is governed by the polarization. Thus, if the photons are z-
polarized, they don’t change the z-projection of the system angular momentum, 
so Δm=0. Meanwhile x- or y-polarized photons have ±1 units of angular 
momentum along z, so they change m by ±1. We won’t nitpick about which set of 
selection rules you assume in answering problems for 5.61 as long as you are 
consistent within the problem. 
 
For the radial part, we need the integral 

π

∫ Rnl ( )r rR 2
n 'l ' ( )r r dr  

0

to be nonzero. This is a complicated integral and there are no symmetries 
(even/odd, etc.) or raising and lowering operators we can use to simplify it. 
Thus, we have no way to argue this integral should be zero. As a result, we will 
default to assuming it is always non-zero – which turns out to be the case. Thus, 
the selection rules for the hydrogen atom are: 

Δn=Anything     Δl=±1     and     Δm=0   (polarized light) 
Δn=Anything     Δl=±1     and     Δm=±1,0       (unpolarized light) 

 
MAGNETIC FIELD EFFECTS 
Now, even though there are many transitions that are easily visible in the H 
atom spectrum above, not every state is distinguishable, because each value of n 
actually corresponds to many, many states (due to degeneracy). It turns out this 
degeneracy can be largely lifted by the application of a magnetic field.  Note 
that the electron has orbital angular momentum and is therefore a circulating 
charge.  According to classical mechanics this leads to a magnetic moment (in 
atomic units) 
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� e
μ = − L = − 1

  2m 2L 

 
If we apply a magnetic field B applied along the z axis, we obtain an additional 
term in our Hamiltonian: 

� 
−μ ⋅B = −μ  zBz = 1

2 BzLz  
We can easily add this term to our hydrogen Hamiltonian operator: 

H = Hatom + 1
2 BzLz  

Now, as we showed above, the H atom wavefunctions are eigenfunctions of both 
Ĥ0  and L̂    z  operators (assuming we choose the nlm functions, as discussed above)  
Thus, the original hydrogen orbitals are also eigenfunctions of new ˆ  H  operator!  
The only thing that has changed are the eigenvalues: 

( ) ⎛ Z 2 ⎞ 
Hψ 1

nlm = Hatom + 2 BzLz ψ nlm = −⎜ + 1 B m⎟ ψ  
⎝ 2n2 2 z ⎠ nlm

Whereas the unperturbed hydrogen atom energies for different values of m 
were degenerate, the new Hamiltonian has energies that depend on m: 

−Z 2 m
Enm =

2n2 + B
2 z 

Thus, for example, in a magnetic field the 2p orbitals with m = -1,0,+1 will have 
different energies.  

Applied

 
 

No magnetic 
field

2p  1s Emission spectra�

magnetic field

2p

1s

m = +1

m = 0

m = 0

m = -1

One line Three  lines

Energy
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As illustrated in the figure, this will split the degeneracy in the spectrum. 
Whereas without a magnetic field all three p orbitals had the same transition 
energy to the ground state, in the presence of the field, we will see three 
different lines corresponding to the three different m values.  Finally, we note 
that the splitting is proportional to the strength of the applied field, Bz, so that 
we can tune the splitting between these lines by changing the field strength.  
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