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MOLECULAR ORBITAL THEORY OF DIATOMIC MOLECULES 

 
For the simple case of the one-electron bond in H +

2  we have seen that using 
the LCAO principle together with the variational principle led to a recipe for 
computing some approximate orbitals for a system that would be very 
difficult to solve analytically.  To generalize this to the more interesting 
case of many electrons, we take our direction from our experience with the 
independent particle model (IPM) applied to atoms and we build up 
antisymmetrized wavefunctions out of the molecular orbitals.  This is the 
basic idea behind molecular orbital theory – there are many variations on the 
central theme, but the same steps are always applied.  Rather than go step-
by-step and deal with H2 and then Li2 and then LiH … we will instead begin by 
stating the general rules for applying MO theory to any system and then 
proceed to show some illustrations of how this works out in practice. 
 

1) Define a basis of atomic orbitals 
For H +

2  our atomic orbital basis was simple: we used the 1s functions 
from both hydrogen atoms and wrote our molecular orbitals as linear 
combinations of our basis functions: 

 ψ = +c s1 21 1A Bc s  
Note that the AO basis determines the dimension of our MO vector and 
also determines the quality of our result – if we had chosen the 3p 
orbitals instead of the 1s orbitals, our results for H +

2  would have been 
very wrong! 
 
For more complicated systems, we will require a more extensive AO basis.  
For example, in O2 we might want to include all the 2s and 2p orbitals on 
both oxygens, in which case our MOs would take the form 

ψ = +c1 22 2sA xc p A + c3 2pyA z+ c p4 2 A + c5 2sB + c6 2pxB + c p7 2 yB + c8 2pzB  
Meanwhile, for methane we might want to include the 1s functions on all 
four hydrogens and the 2s and 2p functions on carbon: 

ψ = +c11s1 c s2 21 1 1+ c3 s3 + c s4 4 + c5 2s + c6 2px y+ c7 2p + c8 2pz  
In the general case, we will write: 

N

ψ = ∑ci iφ AO  
i=1

and represent our MOs by column vectors: 
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⎛ c ⎞
⎜ 1 ⎟

� ⎜ c ⎟ψ = 2  ⎜ ⎟...⎜ ⎟
⎜ c⎝ N ⎟⎠

We note that for the sake of accuracy it is never a bad idea to include 
more AO functions than you might think necessary – more AO functions 
will always lead to more accurate results.  The price is that the more 
accurate computations also tend to be more complicated and time 
consuming.  To illustrate, note that we could have chosen to write the H +

2  
MOs as linear combinations of four functions – the 1s and 2s states on 
each atom: 

ψ = +c s1 21 1A Bc s + c3 2sA + c4 2sB  
Now, when we use the variational principle to get the coefficients of the 
lowest MO, c0, we are guaranteed that there is no set of coefficients 
that will give us a lower energy.  This is the foundation of the variational 
method. Note that one possible set of coefficients is c3=c4=0, in which 
case our 4-function expansion reduces to the 2-function expansion above.  
Thus, the variationally optimal 4-function MO will always have an energy 
less than or equal to the optimal 2-function MO.  As a result, the 
expansion with four functions allows the approximate MO to get closer to 
the ground state energy.  This makes sense, as the four AO expansion 
has more flexibility than the constrained two AO expansion used 
previously.  The reason we didn’t use the four function expansion from 
the beginning is that all the algebra is twice as difficult when we use four 
functions as two: the vectors are twice as long, the matrices are twice as 
big….  At least for a first try, it is generally good to start with the 
smallest conceivable set of AOs for performing a calculation.  If higher 
accuracy is required, a longer expansion can be tried. 
2) Compute the relevant matrix representations 
For H +

2  we had to compute two matrices – the Hamiltonian and the 
overlap, which were both 2-by-2 by virtue of the two AO basis functions: 

⎛ ⎞
⎛ ⎞ 1s ˆ 1s ˆ
H H ⎜ AHel1sA dτ AHel1sB dτ ⎟H ≡ ⎜

11 12 ≡
∫ ∫

⎟  
⎜⎝ H21 H ⎟

22 ⎟ ⎜
⎠ 1s ˆ⎜ ∫ BHel1sA dτ ∫1sBĤel1s τ

⎝ B d ⎟⎠
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⎛
11 12 ∫ ∫1 1s sA Adτ τ1 1s ⎞

⎛ ⎞ A sBdS S ⎜ ⎟S ≡ ≡⎜ ⎟  
⎝ ⎠S S21 22

⎜ ⎟⎜ 1 1s sB Adτ τ1 1sB sBd ⎟⎝ ⎠∫ ∫
In the general case, the Hamiltonian and overlap become N-by-N 
matrices of the form: 

⎛ AO ˆ ˆAO AO AO AO ˆ AO

⎛ ⎞... H ⎜ ∫ ∫φ φ1 1H Hφ φH H 1 2 ∫φ φ1 H N
11 12 1N

⎜ ⎟ ⎜H H ... H ∫ ∫φ φAOH Hˆ ˆAO φ φAO AO ∫φ φAO Ĥ AO

H ⎜ ⎟21 22 2N ⎜≡ ≡ 2 1 2 2 2  
⎜ ⎟... ... ... ... ⎜
⎜ ⎟ ⎜
⎝ ⎠H HN N1 2 ... HNN ⎜ ∫ ∫φ φAOH Hˆ ˆAO φ φAO AO ∫φ φAO Ĥ AO

⎝ ⎠N N1 2 N N

⎛ AO AO
1 1 φ φAO AO

1 2 φ φ ⎞
⎛ ⎞... S ⎜ ∫ ∫φ φ ∫ AO AO

S S 1 N
11 12 1N ⎟

⎜ ⎟ ⎜S S ... S φ φAO AO φ φAO AO φ φAO AO ⎟
S ≡ ≡⎜ ⎟21 22 2N ⎜ ∫ ∫2 1 2 2 ∫ 2 N ⎟ 

⎜ ⎟... ... ... ... ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠S SN N1 2 ... SNN ⎜ ∫ ∫φ φAO AO

N N1 2φ φAO AO ∫ ⎟φ φAO AO
⎝ ⎠N N

This step is where much of the hard work is done in most MO 
calculations.  Not only can the integrals between the different AO 
functions be very tricky to work out, there are a lot of them to be 
computed – N2 of them, to be exact!  This hard work is best done in an 
automated fashion by a computer, and in practice we will usually give you 
explicit values for the matrix elements for this step.  However, it is 
important for you to realize what the matrix elements mean.  The 
diagonal elements of H represent the average energies of putting 
electrons in each AO and the off-diagonal terms tell us how strongly 
coupled one AO is to another.  The diagonal elements of S are 
normalization integrals and the off-diagonal terms tell us how much 
spatial overlap there is between the different AOs 
3) Solve the generalized eigenvalue problem 
For every MO problem, the central step is determining the MOs, which 
always involves solving the generalized eigenvalue problem: 

Hicα = EαSic
α  

The eigenvalues from this equation are the MO energies.  The 
eigenvectors are the coefficients of the molecular orbitals, written as 
sums of AOs: 

N

⎞
⎟
⎟
⎟
⎟
⎟
⎟
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( )
N

ψ α αr r= ∑c AO
i iφ ( ) 

i=1

In general, we will obtain N molecular orbitals out of N atomic orbitals.  
This step is precisely the same as what we did for H +

2 , just generalized 
to the N-orbital case.  We note that for anything larger than a 2-by-2, it 
is usually best to ask a computer to solve the generalized eigenvalue 
problem for you.  
4) Occupy the orbitals according to a stick diagram 
At this point, we must depart from the H +

2  model and begin to account 
for the fact that we have multiple electrons. To do so, we follow the 
prescription of the independent particle model and build a Slater 
determinant out of our orbitals.  However, whereas for atoms we built 
the determinant out of atomic orbitals, for molecules we will build the 
determinant out of molecular orbitals: 

ψ ψ1 1↑ ↓( )1 ( )1 ... ψ N↓ ( )1

ψ ψ1 1↑ ↓( )2 ( )2 ... ψ N↓ ( )2 Ψ ≡  
... ... ... ...

ψ ψ1 1↑ ↓( )N N( ) ... ψ N↓ ( )N
As was the case for atoms, it is much easier to reason in terms of stick 
diagrams, rather than write out all of the orbitals in determinant form.  
So, for example, we would associate a stick diagram like this 

ψ2 

ψ1 
 

with a determinant: 
ψ ψ ψ1 1↑ ( )1 ↓ ↑ ↓( )1 1 12 ( ) ψ 2 ( )
ψ ψ ψ1 1↑ ( )2 ↓ ↑ ↓( )2 2 22 ( ) ψ 2 ( )

Ψ ≡( )1, 2,3, 4  
ψ ψ ψ1 1↑ ( )3 ↓ ↑ ↓( )3 3 32 ( ) ψ 2 ( )
ψ ψ ψ1 1↑ ( )4 ↓ ↑ ↓( )4 4 42 ( ) ψ 2 ( )

But all the information we would need is contained in the stick diagram 
and, of course, the MOs. 
 
5) Compute the energy  
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There are a variety of ways to compute the energy once the MOs have 
been obtained.  The simplest is to use the non-interacting particle picture 
we used for atoms.  Here, the energy of N electrons is just given by the 
sum of the energies of the N orbitals that are occupied: 

N

 E E= ∑ i  
i=1

A more accurate way is to use the independent particle model to add 
an average electron-electron repulsion to the energy: 

N N
E = Ĥ = ∑  E + �

i ∑ Jij−K� ij
i = 1 i < j

Where now the Coulomb and exchange integrals use molecular orbitals 
rather than atomic orbitals: 

1J� ≡ ∫∫ψ *
i ( )1ψ *

j ( )2 ψ i ( )1ψ j ( )2 dr
ij r1−r 1 dr2 dσ1 dσ 2  

2  
1K� ≡ ψ *

i ( )1ψ *
j ( )2 ψ 2 ψ 1 dr dr dσ dσ

ij ∫∫ r1−r i ( ) j ( ) 1 2 1 2
2

In fact, as we will see later on, there are even more elaborate ways to 
obtain the energy from an MO calculation.  When we work things out 
by hand, the non-interacting picture is easiest and we will usually work 
in that approximation when dealing with MOs. 
 

Diatomic molecules 
As a first application of MO theory, it is useful to consider first-row 
diatomic molecules (B2, C2, N2,O2, CO,CN, NO, etc.), which actually map 
rather nicely on to an MO picture.  We’ll go step-by step for the generic 
“AB” diatomic to show how this fits into the MO theory framework.   
 
1) Define a basis of atomic orbitals.  To begin with, one would consider a 

set consisting of 10 atomic orbitals – 5 on A and 5 on B:  
ψ = c11sA + c21sB + c32sA + c4 2sB + c52pzA + c6 2pzB + c7 2pyA + c8 2pyB + c9 2pxA + c10 2pxB      

However, for all the diatomics above, the 1s orbitals on both atoms will 
be doubly occupied. Since we will primarily be interested in comparing the 
MO descriptions of different diatomics the eternally occupied 1s orbital 
will have no qualitative effect on our comparisons.  It is therefore 
customary to remove the 1s orbitals from the expansion: 
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ψ = c1 22sA + c 2sB + c p3 2 2 2zA + + +c4 pzB c p5 yA c6 2pyB + +c7 2pxA c p8 2 xB  
The latter approximation is referred to as the valence electron or 
frozen core approximation.  The advantage is that it reduces the length 
of our vectors from 10 to 8. 

 
2) Compute the Matrix Representations.  Here, we have the rather 

daunting task of computing two 8-by-8 matrices.  As mentioned above, we 
won’t be concerned in this class about filling in precise values for matrix 
elements here.  However, we will be very interested in obtaining the 
proper shape of the matrix by determining which matrix elements are 
zero and which are not.  The Hamiltonian takes the shape: 

⎛ sAHsA∫
⎜ 
⎜ sBHsA∫

sAHsB∫
sBHsB∫

sAHpzA∫
sBHpzA∫

sAHpzB∫
sBHpzB∫

sAHpyA∫
sBHpyA∫

sAHpyB∫
sBHpyB∫

sAHpxA∫
sBHpxA∫

⎞ sAHpxB∫
⎟ 

sBHpxB∫ ⎟ 
⎜ HsA∫ pzA⎜ HsB∫ pzA ∫ pzAHpzA ∫ pzAHpzB ∫ pzAHpyA ∫ pzAHpyB ∫ pzAHpxA ⎟ ∫ pzAHpxB⎟ 
⎜ HsA∫ pzBH = ⎜ 

HsA⎜ ∫ pyA
HsB∫ pzB
HsB∫ pyA

∫ pzBHpzA
∫ pyAHpzA

∫ pzBHpzB
∫ pyAHpzB

∫ pzBHpyA
∫ pyAHpyA

∫ pzBHpyB
∫ pyAHpyB

∫ pzBHpxA
∫ pyAHpxA

⎟ ∫ pzBHpxB⎟ 
∫ pyAHpxB⎟ 

⎜ HsA∫ pyB⎜ HsB∫ pyB ∫ pyBHpzA ∫ pyBHpzB ∫ pyBHpyA ∫ pyBHpyB ∫ pyBHpxA ⎟ ∫ pyBHpxB⎟ 
⎜ HsA∫ pxA⎜ ⎜ HsA⎝ ∫ pxB

HsB∫ pxA
HsB∫ pxB

∫ pxAHpzA
∫ pxBHpzA

∫ pxAHpzB
∫ pxBHpzB

∫ pxAHpyA
∫ pxBHpyA

∫ pxAHpyB
∫ pxBHpyB

∫ pxAHpxA
∫ pxBHpxA

⎟ ∫ pxAHpxB⎟ ⎟ ∫ pxBHpxB⎠ 
 

We assume, for simplicity, that the AB-bond 
lies along the z-axis. Then it is relatively easy 
to see that the molecule is symmetric upon 
reflection along the x and y axes.  As a result, 
the Hamiltonian for AB is also symmetric 
(even) with respect to reflection about x and 
y. Similarly, the s and p orbitals all have 
definite reflection symmetries: 
 
    X Reflection  Y Reflection
Hamiltonian   +   + 
s     +   + 
pz 
py 
px 

    + 
    + 
    - 

  + 
  - 
  + 

 

A B 

y 

z 

x -
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Further, we note that if we perform an integral, if the integrand is odd 
with respect to reflection along either x or y the integrand will be zero.  
This knocks out a bunc
reflection along x: 

h of integrals for us. For example, looking at 

ˆ∫ sA/BHpxA/B = (+)(+)(−) = −    ⇒     0  
ˆ = (+)(+)(−) = −    ∫ pzA/BHpxA/B ⇒     0  
ˆ = (+)(+)(−) = −    ∫ pyA/BHpxA/B ⇒     0  

ˆ = − + − = +∫ pxA/BHpxA/B ( )( )( )         0

We have analogous expressions for reflection about y, which force 
several more integrals to be zero.  The result is that the Hamiltonian 
simplifies to 

⇒ ≠  

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

∫
∫

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

∫
∫

∫
∫

∫
∫

ˆ ˆ ˆ ˆsAHsA sAHsB sAHpzA sAHpzB 0 0 0 0∫
∫

∫
∫

ˆ ˆ ˆ ˆsBHsA sBHsB sBHpzA sBHpzB 0 0 0 0

ˆ ˆ ˆ ˆHsA HsB 0 0 0 0pzA pzA pzAHpzA pzAHpzB

∫
∫

∫
ˆ ˆ ˆ∫ ˆHsA HsB 0 0 0 0pzB pzB pzBHpzA pzBHpzB

H ≡

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

ˆ ˆ0 0 0 0 0 0pyAHpyA pyAHpyB

∫
∫

ˆ ˆ

∫
∫

0 0 0 0 0 0pyBHpyA pyBHpyB
ˆ ˆ0 0 0 0 0 0 pxAHpxA pxAHpxB
ˆ ˆ

∫
∫

0 0 0 0 0 0

∫
∫

pxBHpxA pxBHpxB  

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

which we write: 
0 0 0 0H11 H12 H13 H14

0 0 0 0H21 H22 H23 H24

0 0 0 0H31 H32 H33 H34

0 0 0 0H41 H42 H43 H44  H ≡
0 0 0 0 0 0H55 H56

0 0 0 0 0 0H65 H66

0 0 0 0 0 0 H77 H78

0 0 0 0 0 0 H87 H88

It is easy to show that the overlap matrix has the same overall shape 
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S11

S21

S31

S41S ≡
0
0
0
0

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜⎝

S12

S22

S32

S42

0
0
0
0

S13

S23

S33

S43

0
0
0
0

S14

S24

S34

S44

0
0
0
0

0
0
0
0
S55

S65

0
0

0
0
0
0
S56

S66

0
0

0
0
0
0
0
0
S77

S87

0
0
0
0  
0
0

⎠

S78

S88

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

There are some additional symmetries in these matrices but the 
reflection symmetry properties are the most important. 

3) Solve the generalized eigenvalue problem.  This part would be 
impossible if we hadn’t simplified our matrices above.  However, with the 
simplifications, it is clear that our matrices are block diagonal.  For 
example: 

 
And similarly for the overlap matrix.  The nice thing about block diagonal 
matrices is you can reduce a large eigenvalue problem to several smaller 
ones.  In this case, our matrices break down into a 4-by-4 block (sA, sB, 
pzA, pzB) a 2-by-2 block (pyA,pyB) and another 2-by-2 block (pxA,pxB).  All 
the rest of the matrix is zero.  As a result, we can decompose the above 
8-by-8 into three separate eigenvalue problems:  
 
 
 

⎠

sA       sB       pzA      pzB      pyA     pyB     pxA      pxB     

H H H H 0 0 0 0 sA 11 12 13 14

H H H H 0 0 0 0 sB 21 22 23 24

H H H H 0 0 0 0 pzA 31 32 33 34
 H H H H 0 0 0 0 pzB41 42 43 44H ≡  

⎛
⎜
⎜
⎜
⎜
⎜

0 0 0 0 H H 0 0⎜
⎜
⎜
⎜
⎜

 pyA

⎜⎝

55 56
 0 0 0 0 H H 0 0 pyB65 66
 0 0 0 0 0 0 H H pxA77 78
 0 0 0 0 0 0 H H pxB87 88

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
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A) The first eigenvalue problem to be solved is a 4-by-4: 

H H H H ⎛ ⎞c α
1 S S S S ⎛ ⎞⎛ ⎞11 12 13 14 ⎛⎜ ⎟ 11 12 13 14 ⎜ ⎟⎜ ⎟ ⎜H H21 22 H23 H24 ⎜ ⎟c α
2 α S21 S22 S23 S⎜ 24 ⎜ ⎟⎜ ⎟ =⎜ ⎟ E

H H31 32 H33 H34 c α ⎜ ⎟⎜ ⎟ ⎜S⎜ ⎟3 31 S32 S33 S34 ⎜ ⎟⎜ ⎟ ⎜
⎝ ⎠H H41 42 H43 H ⎜ ⎟α44 41 ⎜ ⎟⎝ ⎠ 42 43 444 ⎝S S S Sc ⎝ ⎠

which will give us four molecular orbitals that can be written as linear 
combinations of the first four AOs (sA, sB, pzA, pzB) 

ψ α α= +c s1 22 2A c α sB + c α
3 2p + α

zA c4 2pzB  
Because these orbitals are symmetric with respect to reflection about 
both x and y, they will look something like the H +

2  bonding and 
antibonding orbitals, and so they are referred to as σ-orbitals. It is 
rather difficult to obtain precise forms for these orbitals.  However, 
we can make an important observation for homonuclear diatomics (N2, 
O2, F2…) Because the molecule is symmetric along z, the potential is 
symmetric and thus the MOs need to be either odd or even along z. 
We can make the +/- combinations of the 2s orbitals to obtain one 
even (bonding) orbital and one odd (antibonding) orbital: 

1

2

3

4

α

α

α

α

⎞
⎟
⎟
⎟
⎟
⎠

c

c

c

c

we can make the similar linear combinations of the 2pz orbitals to 
obtain: 

 

+ 

σ1

σ1∗-orbital 
- 

A B 

A B 

A B 

-orbital 
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+ 

σ2∗-orbital 

σ2-orbital - 

2

  A B 

  A B 

B     A 

where we label the upper orbital σ* because of the nodes between the 
nuclei, whereas the σ orbital has no nodes between the nuclei.  Note 
that these +/- combinations are just to illustrate what the orbitals 
will look like; in order to get the actual molecular orbitals we would 
need to diagonalize the 4-by-4 and get the eigenvectors.  However, if 
we do that for a molecule like N2 we actually get orbitals that look 
strikingly similar to the ones above: 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

σ2
* 

 

σ2
 

 

σ1
* 

 

σ1
 

 

A B
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B) The second eigenvalue problem to be solved is a 2-by-2: 
⎛ ⎞H H55 56

⎛ ⎞c α α
5 Sα ⎛ 55 S56 ⎞ ⎛c ⎞

⎜ ⎟ ⎜ ⎟ = E ⎜ 5 ⎟
H H66 c cα α⎜ ⎟

65
⎜ ⎟⎝ ⎠ ⎝S65 S⎝ ⎠ 66

⎜ ⎟
6 6⎠ ⎝ ⎠

which will give us two molecular orbitals that can be written as linear 
combinations of the next two AOs (pyA,pyB): 

ψ α α= +c p5 62 2α
yA c pyB  

These orbitals get “-“ signs upon reflection about y, so we designate 
them πy orbitals.  Again for the case of a homonuclear, we can make 
the +/- combinations to get an idea what these orbitals look like: 

For a molecule like N2, the orbitals look strikingly similar again: 

  

πy
 

+ 

πy-orbital 

- 
A B 

A B 

 A B 

πy
*-orbital 
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π * 
y

  
C) The last eigenvalue problem is also 2-by-2: 

⎛ ⎞H H α α
77 78

⎛ ⎞c7 α ⎛S77 S ⎞ ⎛c
⎜ ⎟ = E ⎜ 7

⎞
⎜ ⎟ ⎟
H H87 c cα α⎜

78
⎟

88
⎜ ⎟⎝ ⎠ ⎝S S⎝ ⎠ 88

⎟
8 887

⎜⎠ ⎝ ⎠
which will give us two molecular orbitals that can be written as linear 
combinations of the last two AOs (pxA,pxB): 

ψ α α= +c p5 62 2α
xA c pxB  

These orbitals get “-“ signs upon reflection about x, so we designate 
them πx orbitals.  The qualitative picture of the πx orbitals is the same 
as for the πy orbitals above, expect that the πx orbitals come out of 
the page. 

4) Occupy the orbitals based on a stick diagram.  The most important 
thing here is to know the energetic ordering of the orbitals.  This would 
come out of actually evaluating the non-zero matrix elements in matrices 
above and then solving the generalized eigenvalue problem, which is 
tedious to do by hand.  As a general rule however, there are only two 
commonly found MO diagrams for diatomics: 

σ2∗ σ2∗ 

 π *
x ,π * 

y π * * 
x ,πy

σ2 

 πx,π
 π y 

x,πy 

σ2 

σ1∗ Versus σ1∗ 

σ1 σ1  
Hence, the only question is whether the second σ-bonding orbital is above 
or below the π-bonding orbitals.  In practice, the σ2-orbital (which has 
significant pz character) is stabilized as you move from left to right along 
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the periodic table, with the σ2-orbital being less stable for atoms to the 
left of and including nitrogen and more stable for atoms to the right of 
N.  Once we have the orbital energy diagram in hand, we can assign the 
electrons based on stick diagrams.  For example, for N2 we have 10 
valence electrons and we predict a stick diagram for the ground state 
like the one at left below. Meanwhile for O2, which has 12 valence 
electrons, we have the stick diagram shown on the right. 

σ1 

σ1∗ 

σ2 

 πx,πy 

πx
*,πy

* 

σ2∗ 

σ1 

σ1∗ 

σ2 

 πx,πy 

πx
*,πy

* 

σ2∗ 

 
N2 MO Diagram O2 MO Diagram 

We note one important feature we get directly out of the stick 
diagrams: the highest occupied molecular orbital (HOMO) and the 
lowest unoccupied molecular orbital (LUMO).  For example, in N2 the 
HOMO is a σ-bonding orbital, whereas the LUMO is a π* antibonding 
orbital.  Meanwhile, for O2 the HOMO and LUMO are both π* orbitals. 
These orbitals determine reactivity in a crude fashion, as when 
electrons are taken out of the molecule, they are removed from the 
HOMO, and when electrons are added, they are added to the LUMO.  
One of the prominent successes of MO theory is the fact that O2 is 
correctly predicted to be a triplet in its ground state, while N2 is 
correctly identified as a singlet. 

5) Compute the energy.  Here we can say very little about diatomics, 
because we don’t even know the orbital energies exactly, making it 
difficult to predict the energies of the whole molecule.  If we knew 
the orbital energies, the total energy for N2, for example, would be: 

ECO=2Eσ1+2Eσ1∗+2Eπx+2Eπy+2E  
σ2

As we don’t know these orbital energies, we cannot evaluate the 
accuracy of this independent electron model for diatomics. However, 
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the bond order is a useful descriptor that correlates very well with 
the MO energy.  For a diatomic, the bond order is simply: 

((# Bonding Electrons)-(# Antibonding Electrons))/2 
The factor of two reflects the requirement of two electrons for 
forming a bond. A higher bond order implies a stronger bond and a 
lower bond order a weaker bond.  Thus, MO theory predicts N2 will 
have a stronger bond (bond order 3) than O2 (bond order 2), which is 
experimentally verifiable: the bond energy in O2 is 6.1 eV, while the 
bond energy in N2 is 9.8 eV.  

 
Heteronuclear Diatomics 
In the examples above we focused on homonuclear diatomics, but much of 
the algebra transfers easily to the heteronuclear case.  The main difference 
is that we cannot use symmetry to solve (or even approximately solve) the 
eigenvalue problem: there is no longer reflection symmetry about z and so 
the MOs will generally be asymmetric.  To illustrate this effect, let us focus 
on the πy orbitals discussed above.  Making the following definitions: 

ε ∫ ˆ
A ≡ 2pyAH2pyA dτ = Average energy of electron in 2pyA  

εB ≡ ∫ ˆ2pyBH2pyB dτ = Average energy of electron in 2pyB  

V ≡ ∫ ˆ2pyAH2pyB dτ = Resonance integral between 2pyAand 2pyB  

S ≡ ∫ 2pyA2pyB dτ = Overlap between 2pyAand 2pyB  
We can re-write the appropriate eigenvalue equation as 

⎛ εA V ⎞ ⎛ c ⎞
⎜ ⎟ ⎜ 7 ⎛ 1 S ⎞ ⎛ c

⎟ = E ⎜ 7
⎞
⎟  

⎜ V εB
⎟ ⎜⎝ ⎠ ⎝ c ⎟ ⎜

8 S ⎟
⎠ ⎝ 1 ⎠ ⎜⎝ c8

⎟⎠

This eigenvalue problem can be solved, but it is pretty tedious. So at this 
point we make our favorite approximation and assume that our AOs are 
orthogonal.  This is not a great approximation, but it is better for p-type 
orbitals, which have poor overlap along the internuclear axis.  Making this 
approximation, we obtain 

⎛ εA V ⎞ ⎛ c ⎞ c
⎜ ⎟ ⎜ 7

⎛
⎟ = E ⎜ 7

⎞
⎟  

⎜ ε ⎟⎝ V B
⎟ ⎜⎠ 8

⎜ ⎟⎝ c ⎠ ⎝ c8 ⎠

This is an eigenvalue problem that is simple enough to solve analytically.  
Plugging into Mathematica, we get two eigenvalues: 

ε
E± = A + εA ⎛ ε

± A − ε
⎜

A⎞
2

⎟ + V 2  
2 ⎝ 2 ⎠
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We will do 2x2 matrix eigenvalue equations enough in this course that it is 
probably worth memorizing this formula.  It gives you the eigenvales of any 
2x2 matrix as long as the AOs are orthogonal.  Since the radicand is some 
positive number, we see that one of the MOs has an energy lower than the 
average of the AO energies, while the other has an energy higher than the 
average.  Thus, the energies look like 

 
where we have chosen to have “A” be the atom with the lower 2px energy. 
Now, one can show rather easily that the energies are now related by 

E+ + E− = εA + εB  
This relationship holds because we assumed that the AOs were orthogonal.  
Accounting for AO overlap would push the “+” orbital up, making the sum of 
the MO energies somewhat greater than the sum of the AO energies.  But 
the “center of gravity” of the energies is largely unchanged going from AOs 
to MOs – the MO energies just tend to be more spread out than the AO 
energies. 

Solving for the Molecular orbital coefficients is rather difficult, but can be 

done. They depend only on the parameter 2Vβ = .  That is to say, it only 
εA − εB

depends on the ratio of the off diagonal coupling to energy difference 
βbetween the sites.  Define the function α = . For small V, α≈β≈2V, 

1 + 1 + β 2

while for large V, α≈1.  The “-“ and “+ eigenvectors can be written concisely 
in terms of α 
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⎛ 1 ⎞ ⎛ −α ⎞
⎛ ⎟ ⎜
c− ⎞ ⎜ ⎛ ⎟

7 ⎜ 1 + α 2
⎟ c+ ⎞

⎜ 1 2

⎜ ⎟
⎜ c−

= 7 + α ⎟           ⎜ ⎟ =  
8

⎟ ⎜ α ⎟ ⎜ + ⎟ ⎜ 1 ⎟
⎝ ⎠ ⎜ ⎝ c⎟ 8 ⎠ ⎜ ⎟

⎜ 1 ⎟⎝ + α 2 ⎜⎠ ⎝ 1 + α 2 ⎟⎠
It is easy to verify that each vector is normalized:  

2 2
2 2 2 2

c− − 1 α α 1
7 + c8 =

2
+

2
= 1         c+

1 + 1 + 7 + c+
8 =

α 1 + α 2
+

α 1 + α 2
= 1  

and also that they are orthogonal.  
 
The eigenvector expressions are complicated and will be used sparingly in 
this class (Translation: don’t even try to memorize them).  The main thing to 
realize is that the MOs we have here are not just the “+” and “-“ 
combinations of the AOs.  Instead they are some complicated combination of 
2pyA and 2pyB.  Thus, while we can still call these πy orbitals, the simple 
distinction between bonding and antibonding is lost. 
 
However, we can make some headway at interpreting these orbitals. First, 
we realize that c7 and c8 are not just numbers – they also contain meaning 
about probability.  Specifically 

c
2

7 = Probability of finding electron in 2pyA  
c

2

8 = Probability of finding electron in 2pyB  
It is instructive to look at how these probabilities change as we vary the 
energy difference between A and B.  Specifically, lets keep B fixed and 
think about changing the energy of A.  In practice we can only change εA in 
discrete steps (going from B→C→N→O→F) but our expression works for 
any εA and so we will treat it as a continuous parameter.  Varying the energy 
on A (which roughly correlates with electronegativity) and looking at the 
probability of finding an electron on A in the “-“ orbital gives 
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Thus, when A is much more electronegative than B, the electron in the lower 
orbital spends most of its time on A and vice versa when B is more 
electronegative.  There is a window of energies where εA-εB~V and the 
electron is shared between the two atoms. Thus, if the resonance integral is 
small, the electrons will tend to localize on A or B, while a large resonance 
integral means the electrons will tend to be shared unless A and B have very 
different electronegativities.   

When the sharing is sufficiently unequal between the atoms, the bond is said 
to be ionic, while equal sharing is covalent.  It is also instructive to translate 
the above graph into a real picture of the MO for various values of εA

 

: 
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Thus, when the energies of A and B are very different, the lowest MO goes 
from being bonding-like to being lone-pair-like on either A or B (depending 
on which is more electronegative.  This agrees with our chemical intuition. If 
we did the analogous work for the higher energy “+” orbital, we would find 
the opposite trend: the orbital would be anti-bonding-like when the 
electronegativities are nearly the same, and become lone pair-like on the 
higher energy atom when the electronegativities differ by more than ~V. 
 
Now, we’ve only treated the πy orbitals here, but obviously the same 
arguments hold for πx and similar arguments can even be made about the 
sigma orbitals.  Thus, the MO model predicts unequal sharing of electrons 
between atoms.  On the Problem Set, you will spend some time thinking about 
how this unequal sharing impacts properties like bond strengths. Overall, 
given its basis on the independent particle model, MO theory predicts a 
surprisingly large array of chemical features correctly. 
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