MOLECULAR ORBITAL THEORY OF DIATOMIC MOLECULES

For the simple case of the one-electron bond in H_{2}^{+}we have seen that using the LCAO principle together with the variational principle led to a recipe for computing some approximate orbitals for a system that would be very difficult to solve analytically. To generalize this to the more interesting case of many electrons, we take our direction from our experience with the independent particle model (IPM) applied to atoms and we build up antisymmetrized wavefunctions out of the molecular orbitals. This is the basic idea behind molecular orbital theory - there are many variations on the central theme, but the same steps are always applied. Rather than go step-by-step and deal with H_{2} and then Li_{2} and then LiH ... we will instead begin by stating the general rules for applying MO theory to any system and then proceed to show some illustrations of how this works out in practice.

1) Define a basis of atomic orbitals

For $\mathrm{H}_{2}{ }^{+}$our atomic orbital basis was simple: we used the 1 s functions from both hydrogen atoms and wrote our molecular orbitals as linear combinations of our basis functions:

$$
\psi=c_{1} 1 s_{A}+c_{2} 1 s_{B}
$$

Note that the AO basis determines the dimension of our MO vector and also determines the quality of our result - if we had chosen the 3p orbitals instead of the 1 s orbitals, our results for $\mathrm{H}_{2}{ }^{+}$would have been very wrong!

For more complicated systems, we will require a more extensive $A O$ basis. For example, in O_{2} we might want to include all the 2 s and 2 p orbitals on both oxygens, in which case our MOs would take the form

$$
\psi=c_{1} 2 s_{A}+c_{2} 2 p_{x A}+c_{3} 2 p_{y A}+c_{4} 2 p_{z A}+c_{5} 2 s_{B}+c_{6} 2 p_{x B}+c_{7} 2 p_{y B}+c_{8} 2 p_{z B}
$$

Meanwhile, for methane we might want to include the 1 s functions on all four hydrogens and the $2 s$ and $2 p$ functions on carbon:

$$
\psi=c_{1} 1 s_{1}+c_{2} 1 s_{2}+c_{3} 1 s_{3}+c_{4} 1 s_{4}+c_{5} 2 s+c_{6} 2 p_{x}+c_{7} 2 p_{y}+c_{8} 2 p_{z}
$$

In the general case, we will write:

$$
\psi=\sum_{i=1}^{N} c_{i} \phi_{i}^{A O}
$$

and represent our MOs by column vectors:

$$
\vec{\psi}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\ldots \\
c_{N}
\end{array}\right)
$$

We note that for the sake of accuracy it is never a bad idea to include more AO functions than you might think necessary - more AO functions will always lead to more accurate results. The price is that the more accurate computations also tend to be more complicated and time consuming. To illustrate, note that we could have chosen to write the $\mathrm{H}_{2}{ }^{+}$ MOs as linear combinations of four functions - the 1 s and 2 s states on each atom:

$$
\psi=c_{1} 1 s_{A}+c_{2} 1 s_{B}+c_{3} 2 s_{A}+c_{4} 2 s_{B}
$$

Now, when we use the variational principle to get the coefficients of the lowest MO, c_{0}, we are guaranteed that there is no set of coefficients that will give us a lower energy. This is the foundation of the variational method. Note that one possible set of coefficients is $c_{3}=c_{4}=0$, in which case our 4-function expansion reduces to the 2-function expansion above. Thus, the variationally optimal 4-function MO will always have an energy less than or equal to the optimal 2-function MO. As a result, the expansion with four functions allows the approximate MO to get closer to the ground state energy. This makes sense, as the four AO expansion has more flexibility than the constrained two AO expansion used previously. The reason we didn't use the four function expansion from the beginning is that all the algebra is twice as difficult when we use four functions as two: the vectors are twice as long, the matrices are twice as big.... At least for a first try, it is generally good to start with the smallest conceivable set of AOs for performing a calculation. If higher accuracy is required, a longer expansion can be tried.

2) Compute the relevant matrix representations

For $\mathrm{H}_{2}{ }^{+}$we had to compute two matrices - the Hamiltonian and the overlap, which were both 2-by-2 by virtue of the two AO basis functions:

$$
\mathbf{H} \equiv\left(\begin{array}{ll}
H_{11} & H_{12} \\
H_{21} & H_{22}
\end{array}\right) \equiv\left(\begin{array}{ll}
\int 1 s_{A} \hat{H}_{e l} 1 s_{A} d \tau & \int 1 s_{A} \hat{H}_{e l} 1 s_{B} d \tau \\
\int 1 s_{B} \hat{H}_{e l} 1 s_{A} d \tau & \int 1 s_{B} \hat{H}_{e l} 1 s_{B} d \tau
\end{array}\right)
$$

$$
\mathbf{S} \equiv\left(\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right) \equiv\left(\begin{array}{ll}
\int 1 s_{A} 1 s_{A} d \tau & \int 1 s_{A} 1 s_{B} d \tau \\
\int 1 s_{B} 1 s_{A} d \tau & \int 1 s_{B} 1 s_{B} d \tau
\end{array}\right)
$$

In the general case, the Hamiltonian and overlap become N -by- N matrices of the form:

$$
\begin{aligned}
\mathbf{H} \equiv\left(\begin{array}{cccc}
H_{11} & H_{12} & \ldots & H_{1 N} \\
H_{21} & H_{22} & \ldots & H_{2 N} \\
\ldots & \ldots & \ldots & \ldots \\
H_{N 1} & H_{N 2} & \ldots & H_{N N}
\end{array}\right) \equiv\left(\begin{array}{lll}
\int \phi_{1}^{A O} \hat{H} \phi_{1}^{A O} & \int \phi_{1}^{A O} \hat{H} \phi_{2}^{A O} & \int \phi_{1}^{A O} \hat{H} \phi_{N}^{A O} \\
\int \phi_{2}^{A O} \hat{H} \phi_{1}^{A O} & \int \phi_{2}^{A O} \hat{H} \phi_{2}^{A O} & \int \phi_{2}^{A O} \hat{H} \phi_{N}^{A O} \\
\int \phi_{N}^{A O} \hat{H} \phi_{1}^{A O} & \int \phi_{N}^{A O} \hat{H} \phi_{2}^{A O} & \int \phi_{N}^{A O} \hat{H} \phi_{N}^{A O}
\end{array}\right) \\
\mathbf{S} \equiv\left(\begin{array}{cccc}
S_{11} & S_{12} & \ldots & S_{1 N} \\
S_{21} & S_{22} & \ldots & S_{2 N} \\
\ldots & \ldots & \ldots & \ldots \\
S_{N 1} & S_{N 2} & \ldots & S_{N N}
\end{array}\right) \equiv\left(\begin{array}{lll}
\int \phi_{1}^{A O} \phi_{1}^{A O} & \int \phi_{1}^{A O} \phi_{2}^{A O} & \int \phi_{1}^{A O} \phi_{N}^{A O} \\
\int \phi_{2}^{A O} \phi_{1}^{A O} & \int \phi_{2}^{A O} \phi_{2}^{A O} & \int \phi_{2}^{A O} \phi_{N}^{A O} \\
\int \phi_{N}^{A O} \phi_{1}^{A O} & \int \phi_{N}^{A O} \phi_{2}^{A O} & \int \phi_{N}^{A O} \phi_{N}^{A O}
\end{array}\right)
\end{aligned}
$$

This step is where much of the hard work is done in most MO calculations. Not only can the integrals between the different AO functions be very tricky to work out, there are a lot of them to be computed - N^{2} of them, to be exact! This hard work is best done in an automated fashion by a computer, and in practice we will usually give you explicit values for the matrix elements for this step. However, it is important for you to realize what the matrix elements mean. The diagonal elements of \mathbf{H} represent the average energies of putting electrons in each AO and the off-diagonal terms tell us how strongly coupled one AO is to another. The diagonal elements of S are normalization integrals and the off-diagonal terms tell us how much spatial overlap there is between the different AOs
3) Solve the generalized eigenvalue problem

For every MO problem, the central step is determining the MOs, which always involves solving the generalized eigenvalue problem:

$$
\mathbf{H} \cdot \mathbf{c}^{\alpha}=E_{\alpha} \mathbf{S} \cdot \mathbf{c}^{\alpha}
$$

The eigenvalues from this equation are the $M O$ energies. The eigenvectors are the coefficients of the molecular orbitals, written as sums of AOs:

$$
\psi^{\alpha}(\mathbf{r})=\sum_{i=1}^{N} c_{i}^{\alpha} \phi_{i}^{4 O}(\mathbf{r})
$$

In general, we will obtain N molecular orbitals out of N atomic orbitals. This step is precisely the same as what we did for $\mathrm{H}_{2}{ }^{+}$, just generalized to the N -orbital case. We note that for anything larger than a 2-by-2, it is usually best to ask a computer to solve the generalized eigenvalue problem for you.
4) Occupy the orbitals according to a stick diagram

At this point, we must depart from the $\mathrm{H}_{2}{ }^{+}$model and begin to account for the fact that we have multiple electrons. To do so, we follow the prescription of the independent particle model and build a Slater determinant out of our orbitals. However, whereas for atoms we built the determinant out of atomic orbitals, for molecules we will build the determinant out of molecular orbitals:

$$
\Psi \equiv\left|\begin{array}{cccc}
\psi^{1 \uparrow}(1) & \psi^{1 \downarrow}(1) & \ldots & \psi^{N \downarrow}(1) \\
\psi^{1 \uparrow}(2) & \psi^{1 \downarrow}(2) & \ldots & \psi^{N \downarrow}(2) \\
\ldots & \ldots & \ldots & \ldots \\
\psi^{1 \uparrow}(N) & \psi^{1 \downarrow}(N) & \ldots & \psi^{N \downarrow}(N)
\end{array}\right|
$$

As was the case for atoms, it is much easier to reason in terms of stick diagrams, rather than write out all of the orbitals in determinant form. So, for example, we would associate a stick diagram like this

with a determinant:

$$
\Psi(1,2,3,4) \equiv\left|\begin{array}{llll}
\psi^{1 \uparrow}(1) & \psi^{1 \downarrow}(1) & \psi^{2 \uparrow}(1) & \psi^{2 \downarrow}(1) \\
\psi^{1 \uparrow}(2) & \psi^{1 \downarrow}(2) & \psi^{2 \uparrow}(2) & \psi^{2 \downarrow}(2) \\
\psi^{1 \uparrow}(3) & \psi^{1 \downarrow}(3) & \psi^{2 \uparrow}(3) & \psi^{2 \downarrow}(3) \\
\psi^{1 \uparrow}(4) & \psi^{1 \downarrow}(4) & \psi^{2 \uparrow}(4) & \psi^{2 \downarrow}(4)
\end{array}\right|
$$

But all the information we would need is contained in the stick diagram and, of course, the MOs.

5) Compute the energy

There are a variety of ways to compute the energy once the MOs have been obtained. The simplest is to use the non-interacting particle picture we used for atoms. Here, the energy of N electrons is just given by the sum of the energies of the N orbitals that are occupied:

$$
E=\sum_{i=1}^{N} E_{i}
$$

A more accurate way is to use the independent particle model to add an average electron-electron repulsion to the energy:

$$
E=\langle\hat{H}\rangle=\sum_{i=1}^{N} E_{i}+\sum_{i<j}^{N} \tilde{J}_{i j}-\tilde{K}_{i j}
$$

Where now the Coulomb and exchange integrals use molecular orbitals rather than atomic orbitals:

$$
\begin{aligned}
& \tilde{J}_{i j} \equiv \iint \psi_{i}^{*}(1) \psi_{j}^{*}(2) \frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} \psi_{i}(1) \psi_{j}(2) d \mathbf{r}_{1} d \mathbf{r}_{2} d \sigma_{1} d \sigma_{2} \\
& \tilde{K}_{i j} \equiv \iint \psi_{i}^{*}(1) \psi_{j}^{*}(2) \frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} \psi_{i}(2) \psi_{j}(1) d \mathbf{r}_{1} d \mathbf{r}_{2} d \sigma_{1} d \sigma_{2}
\end{aligned}
$$

In fact, as we will see later on, there are even more elaborate ways to obtain the energy from an MO calculation. When we work things out by hand, the non-interacting picture is easiest and we will usually work in that approximation when dealing with MOs.

Diatomic molecules

As a first application of MO theory, it is useful to consider first-row diatomic molecules ($B_{2}, C_{2}, N_{2}, O_{2}, C O, C N, N O$, etc.), which actually map rather nicely on to an MO picture. We'll go step-by step for the generic " $A B$ " diatomic to show how this fits into the MO theory framework.

1) Define a basis of atomic orbitals. To begin with, one would consider a set consisting of 10 atomic orbitals -5 on A and 5 on B :

$$
\psi=c_{1} 1 s_{A}+c_{2} 1 s_{B}+c_{3} 2 s_{A}+c_{4} 2 s_{B}+c_{5} 2 p_{z A}+c_{6} 2 p_{z B}+c_{7} 2 p_{y A}+c_{8} 2 p_{y B}+c_{9} 2 p_{x A}+c_{10} 2 p_{x B}
$$

However, for all the diatomics above, the 1 s orbitals on both atoms will be doubly occupied. Since we will primarily be interested in comparing the MO descriptions of different diatomics the eternally occupied 1s orbital will have no qualitative effect on our comparisons. It is therefore customary to remove the 1 s orbitals from the expansion:

$$
\psi=c_{1} 2 s_{A}+c_{2} 2 s_{B}+c_{3} 2 p_{z A}+c_{4} 2 p_{z B}+c_{5} 2 p_{y A}+c_{6} 2 p_{y B}+c_{7} 2 p_{x A}+c_{8} 2 p_{x B}
$$

The latter approximation is referred to as the valence electron or frozen core approximation. The advantage is that it reduces the length of our vectors from 10 to 8 .
2) Compute the Matrix Representations. Here, we have the rather daunting task of computing two 8-by-8 matrices. As mentioned above, we won't be concerned in this class about filling in precise values for matrix elements here. However, we will be very interested in obtaining the proper shape of the matrix by determining which matrix elements are zero and which are not. The Hamiltonian takes the shape:

$$
\mathbf{H}=\left(\begin{array}{llllllll}
\int s_{A} H s_{A} & \int s_{A} H s_{B} & \int s_{A} H p_{z A} & \int s_{A} H p_{z B} & s_{A} H p_{y A} & \int s_{A} H p_{y B} & \int s_{A} H p_{x A} & \int s_{A} H p_{x B} \\
\int s_{B} H s_{A} & \int s_{B} H s_{B} & \int s_{B} H p_{z A} & \int s_{B} H p_{z B} & s_{s} H p_{y A} & \int s_{B} H p_{y B} & \int s_{B} H p_{x A} & \int s_{B} H p_{x B} \\
\int p_{z A} H s_{A} & \int p_{z A} H s_{B} & \int p_{z A} H p_{z A} & \int p_{z A} H p_{z B} & \int p_{z A} H p_{y A} & \int p_{z A} H p_{y B} & \int p_{z A} H p_{x A} & \int p_{z A} H p_{x B} \\
\int p_{z B} H s_{A} & p_{z B} H s_{B} & \int p_{z B} H p_{z A} & \int p_{z B} H p_{z B} & \int p_{z B} H p_{y A} & \int p_{z B} H p_{y B} & \int p_{z B} H p_{x A} & \int p_{z B} H p_{x B} \\
\int p_{y A} H s_{A} & \int p_{y A} H s_{B} & \int p_{y A} H p_{z A} & \int p_{y A} H p_{z B} & \int p_{y A} H p_{y A} & \int p_{y A} H p_{y B} & \int p_{y A} H p_{x A} & \int p_{y A} H p_{x B} \\
\int p_{y B} H s_{A} & \int p_{y B} H s_{B} & \int p_{y B} H p_{z A} & \int p_{y B} H p_{z B} & \int p_{y B} H p_{y A} & \int p_{y B} H p_{y B} & \int p_{y B} H p_{x A} & \int p_{y B} H p_{x B} \\
\int p_{x A} H s_{A} & \int p_{x A} H s_{B} & \int p_{x A} H p_{z A} & \int p_{x A} H p_{z B} & \int p_{x A} H p_{y A} & \int p_{x A} H p_{y B} & \int p_{x A} H p_{x A} & \int p_{x A} H p_{x B} \\
\int p_{x B} H s_{A} & \int p_{x B} H s_{B} & \int p_{x B} H p_{z A} & \int p_{x B} H p_{z B} & \int p_{x B} H p_{y A} & \int p_{x B} H p_{y B} & \int p_{x B} H p_{x A} & \int p_{x B} H p_{x B}
\end{array}\right)
$$

We assume, for simplicity, that the AB-bond lies along the z-axis. Then it is relatively easy to see that the molecule is symmetric upon reflection along the x and y axes. As a result, the Hamiltonian for $A B$ is also symmetric (even) with respect to reflection about x and y. Similarly, the s and p orbitals all have definite reflection symmetries:

XReflection Y Reflection

Hamiltonian
S
p_{z}
py
p_{x}
$+$
$+$
$+$
-
+

Further, we note that if we perform an integral, if the integrand is odd with respect to reflection along either x or y the integrand will be zero. This knocks out a bunch of integrals for us. For example, looking at reflection along x :

$$
\begin{array}{rll}
\int s_{A / B} \hat{H} p_{x A / B}=(+)(+)(-)=- & \Rightarrow & 0 \\
\int p_{z A / B} \hat{H} p_{x A / B}=(+)(+)(-)=- & \Rightarrow & 0 \\
\int p_{y A / B} \hat{H} p_{x A / B}=(+)(+)(-)=- & \Rightarrow & 0 \\
\int p_{x A / B} \hat{H} p_{x A / B}=(-)(+)(-)=+ & \Rightarrow & \neq 0
\end{array}
$$

We have analogous expressions for reflection about y, which force several more integrals to be zero. The result is that the Hamiltonian simplifies to
$\mathbf{H} \equiv\left(\begin{array}{cccccccc}\int s_{A} \hat{H} s_{A} & \int s_{A} \hat{H} s_{B} & \int s_{A} \hat{H} p_{z A} & \int s_{A} \hat{H} p_{z B} & 0 & 0 & 0 & 0 \\ \int s_{B} \hat{H} s_{A} & \int s_{B} \hat{H} s_{B} & \int s_{B} \hat{H} p_{z A} & \int s_{B} \hat{H} p_{z B} & 0 & 0 & 0 & 0 \\ \int p_{z A} \hat{H} s_{A} & \int p_{z A} \hat{H} s_{B} & \int p_{z A} \hat{H} p_{z A} & \int p_{z A} \hat{H} p_{z B} & 0 & 0 & 0 & 0 \\ \int p_{z B} \hat{H} s_{A} & \int p_{z B} \hat{H} s_{B} & \int p_{z B} \hat{H} p_{z A} & \int p_{z B} \hat{H} p_{z B} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \int p_{y A} \hat{H} p_{y A} & \int p_{y A} \hat{H} p_{y B} & 0 & 0 \\ 0 & 0 & 0 & 0 & \int p_{y B} \hat{H} p_{y A} & \int p_{y B} \hat{H} p_{y B} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \int p_{x A} \hat{H} p_{x A} & \int p_{x A} \hat{H} p_{x B} \\ 0 & 0 & 0 & 0 & 0 & 0 & \int p_{x B} \hat{H} p_{x A} & \int p_{x B} \hat{H} p_{x B}\end{array}\right)$
which we write:

$$
\mathbf{H} \equiv\left(\begin{array}{cccccccc}
H_{11} & H_{12} & H_{13} & H_{14} & 0 & 0 & 0 & 0 \\
H_{21} & H_{22} & H_{23} & H_{24} & 0 & 0 & 0 & 0 \\
H_{31} & H_{32} & H_{33} & H_{34} & 0 & 0 & 0 & 0 \\
H_{41} & H_{42} & H_{43} & H_{44} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & H_{55} & H_{56} & 0 & 0 \\
0 & 0 & 0 & 0 & H_{65} & H_{66} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & H_{77} & H_{78} \\
0 & 0 & 0 & 0 & 0 & 0 & H_{87} & H_{88}
\end{array}\right)
$$

It is easy to show that the overlap matrix has the same overall shape

$$
\mathbf{S} \equiv\left(\begin{array}{cccccccc}
S_{11} & S_{12} & S_{13} & S_{14} & 0 & 0 & 0 & 0 \\
S_{21} & S_{22} & S_{23} & S_{24} & 0 & 0 & 0 & 0 \\
S_{31} & S_{32} & S_{33} & S_{34} & 0 & 0 & 0 & 0 \\
S_{41} & S_{42} & S_{43} & S_{44} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & S_{55} & S_{56} & 0 & 0 \\
0 & 0 & 0 & 0 & S_{65} & S_{66} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & S_{77} & S_{78} \\
0 & 0 & 0 & 0 & 0 & 0 & S_{87} & S_{88}
\end{array}\right)
$$

There are some additional symmetries in these matrices but the reflection symmetry properties are the most important.
3) Solve the generalized eigenvalue problem. This part would be impossible if we hadn't simplified our matrices above. However, with the simplifications, it is clear that our matrices are block diagonal. For example:

$$
\begin{gathered}
s_{A} \\
\hline
\end{gathered} s_{B}
$$

And similarly for the overlap matrix. The nice thing about block diagonal matrices is you can reduce a large eigenvalue problem to several smaller ones. In this case, our matrices break down into a 4 -by- 4 block (s_{A}, s_{B}, $p_{z A}, p_{z B}$) a 2-by-2 block ($p_{y A}, p_{y B}$) and another 2-by-2 block ($p_{x A}, p_{x B}$). All the rest of the matrix is zero. As a result, we can decompose the above 8 -by-8 into three separate eigenvalue problems:
A) The first eigenvalue problem to be solved is a 4-by-4:

$$
\left(\begin{array}{llll}
H_{11} & H_{12} & H_{13} & H_{14} \\
H_{21} & H_{22} & H_{23} & H_{24} \\
H_{31} & H_{32} & H_{33} & H_{34} \\
H_{41} & H_{42} & H_{43} & H_{44}
\end{array}\right)\left(\begin{array}{l}
c_{1}^{\alpha} \\
c_{2}{ }^{\alpha} \\
c_{3}^{\alpha} \\
c_{4}{ }^{\alpha}
\end{array}\right)=E^{\alpha}\left(\begin{array}{llll}
S_{11} & S_{12} & S_{13} & S_{14} \\
S_{21} & S_{22} & S_{23} & S_{24} \\
S_{31} & S_{32} & S_{33} & S_{34} \\
S_{41} & S_{42} & S_{43} & S_{44}
\end{array}\right)\left(\begin{array}{c}
c_{1}^{\alpha} \\
c_{2}^{\alpha} \\
c_{3}^{\alpha} \\
c_{4}{ }^{\alpha}
\end{array}\right)
$$

which will give us four molecular orbitals that can be written as linear combinations of the first four $A O s\left(s_{A}, s_{B}, p_{z A}, p_{z B}\right)$

$$
\psi^{\alpha}=c_{1}^{\alpha} 2 s_{A}+c_{2}^{\alpha} 2 s_{B}+c_{3}^{\alpha} 2 p_{z A}+c_{4}^{\alpha} 2 p_{z B}
$$

Because these orbitals are symmetric with respect to reflection about both x and y, they will look something like the H_{2}^{+}bonding and antibonding orbitals, and so they are referred to as σ-orbitals. It is rather difficult to obtain precise forms for these orbitals. However, we can make an important observation for homonuclear diatomics (N_{2}, $\mathrm{O}_{2}, \mathrm{~F}_{2} \ldots$) Because the molecule is symmetric along z, the potential is symmetric and thus the MOs need to be either odd or even along z. We can make the $+/$ - combinations of the $2 s$ orbitals to obtain one even (bonding) orbital and one odd (antibonding) orbital:

we can make the similar linear combinations of the 2 pz orbitals to obtain:

where we label the upper orbital σ^{*} because of the nodes between the nuclei, whereas the σ orbital has no nodes between the nuclei. Note that these +/-combinations are just to illustrate what the orbitals will look like; in order to get the actual molecular orbitals we would need to diagonalize the 4-by-4 and get the eigenvectors. However, if we do that for a molecule like N_{2} we actually get orbitals that look strikingly similar to the ones above:

$\sigma_{2}{ }^{*}$

σ_{2}
σ_{1}^{*}
σ_{1}
B) The second eigenvalue problem to be solved is a 2-by-2:

$$
\left(\begin{array}{ll}
H_{55} & H_{56} \\
H_{65} & H_{66}
\end{array}\right)\binom{c_{5}^{\alpha}}{c_{6}^{\alpha}}=E^{\alpha}\left(\begin{array}{ll}
S_{55} & S_{56} \\
S_{65} & S_{66}
\end{array}\right)\binom{c_{5}^{\alpha}}{c_{6}^{\alpha}}
$$

which will give us two molecular orbitals that can be written as linear combinations of the next two AOs ($p_{y А}, \mathrm{P}_{\mathrm{y}}$):

$$
\psi^{\alpha}=c_{5}^{\alpha} 2 p_{y A}+c_{6}^{\alpha} 2 p_{y B}
$$

These orbitals get "-" signs upon reflection about y, so we designate them π_{y} orbitals. Again for the case of a homonuclear, we can make the +/- combinations to get an idea what these orbitals look like:

$$
\pi_{y} \text {-orbital }
$$

A B

For a molecule like N_{2}, the orbitals look strikingly similar again:

C) The last eigenvalue problem is also 2-by-2:

$$
\left(\begin{array}{ll}
H_{77} & H_{78} \\
H_{87} & H_{88}
\end{array}\right)\binom{c_{7}^{\alpha}}{c_{8}^{\alpha}}=E^{\alpha}\left(\begin{array}{ll}
S_{77} & S_{78} \\
S_{87} & S_{88}
\end{array}\right)\binom{c_{7}^{\alpha}}{c_{8}^{\alpha}}
$$

which will give us two molecular orbitals that can be written as linear combinations of the last two AOs $\left(p_{\times A}, p_{\times B}\right)$:

$$
\psi^{\alpha}=c_{5}^{\alpha} 2 p_{x A}+c_{6}^{\alpha} 2 p_{x B}
$$

These orbitals get "-" signs upon reflection about x, so we designate them π_{x} orbitals. The qualitative picture of the π_{x} orbitals is the same as for the π_{y} orbitals above, expect that the π_{x} orbitals come out of the page.
4) Occupy the orbitals based on a stick diagram. The most important thing here is to know the energetic ordering of the orbitals. This would come out of actually evaluating the non-zero matrix elements in matrices above and then solving the generalized eigenvalue problem, which is tedious to do by hand. As a general rule however, there are only two commonly found MO diagrams for diatomics:

Hence, the only question is whether the second σ-bonding orbital is above or below the π-bonding orbitals. In practice, the σ_{2}-orbital (which has significant p_{z} character) is stabilized as you move from left to right along
the periodic table, with the σ_{2}-orbital being less stable for atoms to the left of and including nitrogen and more stable for atoms to the right of N . Once we have the orbital energy diagram in hand, we can assign the electrons based on stick diagrams. For example, for N_{2} we have 10 valence electrons and we predict a stick diagram for the ground state like the one at left below. Meanwhile for O_{2}, which has 12 valence electrons, we have the stick diagram shown on the right.

We note one important feature we get directly out of the stick diagrams: the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). For example, in N_{2} the HOMO is a σ-bonding orbital, whereas the LUMO is a π^{\star} antibonding orbital. Meanwhile, for O_{2} the HOMO and LUMO are both π^{\star} orbitals. These orbitals determine reactivity in a crude fashion, as when electrons are taken out of the molecule, they are removed from the HOMO, and when electrons are added, they are added to the LUMO. One of the prominent successes of MO theory is the fact that O_{2} is correctly predicted to be a triplet in its ground state, while N_{2} is correctly identified as a singlet.
5) Compute the energy. Here we can say very little about diatomics, because we don't even know the orbital energies exactly, making it difficult to predict the energies of the whole molecule. If we knew the orbital energies, the total energy for N_{2}, for example, would be:

$$
\mathrm{E}_{c o}=2 \mathrm{E}_{\sigma 1}+2 \mathrm{E}_{\sigma 1+}+2 \mathrm{E}_{\pi \mathrm{x}}+2 \mathrm{E}_{\pi \mathrm{y}}+2 \mathrm{E}_{\sigma 2}
$$

As we don't know these orbital energies, we cannot evaluate the accuracy of this independent electron model for diatomics. However,
the bond order is a useful descriptor that correlates very well with the MO energy. For a diatomic, the bond order is simply: ((\# Bonding Electrons)-(\# Antibonding Electrons))/2 The factor of two reflects the requirement of two electrons for forming a bond. A higher bond order implies a stronger bond and a lower bond order a weaker bond. Thus, MO theory predicts N_{2} will have a stronger bond (bond order 3) than O_{2} (bond order 2), which is experimentally verifiable: the bond energy in O_{2} is 6.1 eV , while the bond energy in N_{2} is 9.8 eV .

Heteronuclear Diatomics

In the examples above we focused on homonuclear diatomics, but much of the algebra transfers easily to the heteronuclear case. The main difference is that we cannot use symmetry to solve (or even approximately solve) the eigenvalue problem: there is no longer reflection symmetry about z and so the MOs will generally be asymmetric. To illustrate this effect, let us focus on the π_{y} orbitals discussed above. Making the following definitions:

$$
\begin{gathered}
\varepsilon_{A} \equiv \int 2 p_{y A} \hat{H} 2 p_{y A} d \tau=\text { Average energy of electron in } 2 p_{y A} \\
\varepsilon_{B} \equiv \int 2 p_{y B} \hat{H} 2 p_{y B} d \tau=\text { Average energy of electron in } 2 p_{y B} \\
V \equiv \int 2 p_{y A} \hat{H} 2 p_{y B} d \tau=\text { Resonance integral between } 2 p_{y A} \text { and } 2 \mathrm{p}_{y B} \\
S \equiv \int 2 p_{y A} 2 p_{y B} d \tau=\text { Overlap between } 2 p_{y A} \text { and } 2 p_{y B}
\end{gathered}
$$

We can re-write the appropriate eigenvalue equation as

$$
\left(\begin{array}{cc}
\varepsilon_{A} & V \\
V & \varepsilon_{B}
\end{array}\right)\binom{c_{7}}{c_{8}}=E\left(\begin{array}{ll}
1 & S \\
S & 1
\end{array}\right)\binom{c_{7}}{c_{8}}
$$

This eigenvalue problem can be solved, but it is pretty tedious. So at this point we make our favorite approximation and assume that our AOs are orthogonal. This is not a great approximation, but it is better for p-type orbitals, which have poor overlap along the internuclear axis. Making this approximation, we obtain

$$
\left(\begin{array}{cc}
\varepsilon_{A} & V \\
V & \varepsilon_{B}
\end{array}\right)\binom{c_{7}}{c_{8}}=E\binom{c_{7}}{c_{8}}
$$

This is an eigenvalue problem that is simple enough to solve analytically. Plugging into Mathematica, we get two eigenvalues:

$$
E_{ \pm}=\frac{\varepsilon_{A}+\varepsilon_{A}}{2} \pm \sqrt{\left(\frac{\varepsilon_{A}-\varepsilon_{A}}{2}\right)^{2}+|V|^{2}}
$$

We will do 2×2 matrix eigenvalue equations enough in this course that it is probably worth memorizing this formula. It gives you the eigenvales of any 2×2 matrix as long as the AOs are orthogonal. Since the radicand is some positive number, we see that one of the MOs has an energy lower than the average of the AO energies, while the other has an energy higher than the average. Thus, the energies look like

where we have chosen to have " A " be the atom with the lower $2 p_{x}$ energy. Now, one can show rather easily that the energies are now related by

$$
E_{+}+E_{-}=\varepsilon_{A}+\varepsilon_{B}
$$

This relationship holds because we assumed that the AOs were orthogonal. Accounting for $A O$ overlap would push the "+" orbital up, making the sum of the $M O$ energies somewhat greater than the sum of the $A O$ energies. But the "center of gravity" of the energies is largely unchanged going from AOs to MOs - the MO energies just tend to be more spread out than the AO energies.

Solving for the Molecular orbital coefficients is rather difficult, but can be done. They depend only on the parameter $\beta=\frac{2 V}{\varepsilon_{A}-\varepsilon_{B}}$. That is to say, it only depends on the ratio of the off diagonal coupling to energy difference between the sites. Define the function $\alpha=\frac{\beta}{1+\sqrt{1+\beta^{2}}}$. For small $V, \alpha \approx \beta \approx 2 V$, while for large $V, \alpha \approx 1$. The "-" and "+ eigenvectors can be written concisely in terms of α

$$
\binom{c_{7}^{-}}{c_{8}^{-}}=\binom{\frac{1}{\sqrt{1+\alpha^{2}}}}{\frac{\alpha}{\sqrt{1+\alpha^{2}}}} \quad\binom{c_{7}^{+}}{c_{8}^{+}}=\binom{\frac{-\alpha}{\sqrt{1+\alpha^{2}}}}{\frac{1}{\sqrt{1+\alpha^{2}}}}
$$

It is easy to verify that each vector is normalized:

$$
\left|c_{7}^{-}\right|^{2}+\left|c_{8}^{-}\right|^{2}=\frac{1}{1+\alpha^{2}}+\frac{\alpha^{2}}{1+\alpha^{2}}=1 \quad\left|c_{7}^{+}\right|^{2}+\left|c_{8}^{+}\right|^{2}=\frac{\alpha^{2}}{1+\alpha^{2}}+\frac{1}{1+\alpha^{2}}=1
$$

and also that they are orthogonal.

The eigenvector expressions are complicated and will be used sparingly in this class (Translation: don't even try to memorize them). The main thing to realize is that the MOs we have here are not just the "+" and "-"
combinations of the AOs. Instead they are some complicated combination of $2 p_{y A}$ and $2 p_{y B}$. Thus, while we can still call these π_{y} orbitals, the simple distinction between bonding and antibonding is lost.

However, we can make some headway at interpreting these orbitals. First, we realize that c_{7} and c_{8} are not just numbers - they also contain meaning about probability. Specifically

$$
\begin{aligned}
& \left|c_{7}\right|^{2}=\text { Probability of finding electron in } 2 \mathrm{p}_{y A} \\
& \left|c_{8}\right|^{2}=\text { Probability of finding electron in } 2 \mathrm{p}_{y B}
\end{aligned}
$$

It is instructive to look at how these probabilities change as we vary the energy difference between A and B. Specifically, lets keep B fixed and think about changing the energy of A. In practice we can only change ε_{A} in discrete steps (going from $\mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{N} \rightarrow \mathrm{O} \rightarrow \mathrm{F}$) but our expression works for any ε_{A} and so we will treat it as a continuous parameter. Varying the energy on A (which roughly correlates with electronegativity) and looking at the probability of finding an electron on A in the "-" orbital gives

Thus, when A is much more electronegative than B, the electron in the lower orbital spends most of its time on A and vice versa when B is more electronegative. There is a window of energies where $\varepsilon_{A}-\varepsilon_{B} \sim V$ and the electron is shared between the two atoms. Thus, if the resonance integral is small, the electrons will tend to localize on A or B, while a large resonance integral means the electrons will tend to be shared unless A and B have very different electronegativities.

When the sharing is sufficiently unequal between the atoms, the bond is said to be ionic, while equal sharing is covalent. It is also instructive to translate the above graph into a real picture of the $M O$ for various values of ε_{A} :

Thus, when the energies of A and B are very different, the lowest $M O$ goes from being bonding-like to being lone-pair-like on either A or B (depending on which is more electronegative. This agrees with our chemical intuition. If we did the analogous work for the higher energy " + " orbital, we would find the opposite trend: the orbital would be anti-bonding-like when the electronegativities are nearly the same, and become lone pair-like on the higher energy atom when the electronegativities differ by more than $\sim \mathrm{V}$.

Now, we've only treated the π_{y} orbitals here, but obviously the same arguments hold for π_{x} and similar arguments can even be made about the sigma orbitals. Thus, the MO model predicts unequal sharing of electrons between atoms. On the Problem Set, you will spend some time thinking about how this unequal sharing impacts properties like bond strengths. Overall, given its basis on the independent particle model, MO theory predicts a surprisingly large array of chemical features correctly.

MIT OpenCourseWare
http://ocw.mit.edu

5.61 Physical Chemistry

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

