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Lecture #4: The Classical Wave Equation and Separation of 
Variables 

Last time: 

Two-slit experiment 
2 paths to same point on screen 
2 paths differ by nλ-constructive interference 
1 photon interferes with itself 
get 1 dot on screen-collapse of “state of system” to a single dot 
to determine the state of the system, need many experiments, many dots. 

Probability amplitude distribution (encodes 10, 01, or 11 where 1 = open, 0 = closed) 
collapses to single dot due to the act of detection of a photon. 

Quantum Mechanics: information about the experimental setup (i.e. “the system”) is 
“encoded” in results of a sequence of independent experiments. 

Musicians know that the sound produced by an instrument reveals 

* detailed physical structure of the instrument 
e.g. drum head shaped as 

OR OR 

* technique of musician 

Same as for Quantum Mechanics. 
Today: philosophy 

wave equation 
separation of variables 
boundary conditions — normal modes 
superposition of normal modes: “the pluck” 
cartoons of motion 

What do we know so far? 

weirdness 
wave-particle duality 
interference 
experiment samples probability amplitude (i.e. + or –) distribution 
we can’t see inside microscopic systems 
we do experiments that indirectly reveal structure and mechanism 
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patterns-like interference structure – reveal structure and mechanism 
spectrum contains patterns 

1st 1/2 of 5.61 deals with exactly solved problems 
Particle in a Box 
Harmonic Oscillator 
Rigid Rotor 
Hydrogen Atom 

These are templates for our understanding of reality 
Perturbation Theory will show us how to use the patterns associated with these simple 
problems to represent and decode reality. 

I have been told many times that 5.61 is very difficult because it is very mathematical. 

This lecture might be the most mathematical of the entire 5.61 course. 

The goal is insight. For chemists, this is usually pictorial and qualitative. 

I intend to show the pictures and insights behind the equations. 

What are you expected to do when faced with one of the many differential equations in 
Quantum Mechanics? 

1. Know where the differential equation comes from (not derive it) 

2. Know standard methods used (by others) to solve it. 

* a most common Ordinary Differential Equation 
d 2 f = kf 
dx2 

always 2 linearly independent general solutions for a 2nd order equation. 
* find a way to rewrite your equation as one of the well-known solved equations 
* separation of variables 

What are we looking for? 

* general solutions 
• nodes (adjacent node spacing is λ/2) 
• envelope (related to probability) 
• phase velocity 

* specific physical system, specific solution 
• Boundary conditions 
• usually get some sort of quantization from 2nd boundary condition 
• “normal modes” 
• qualitative sketch: nodes, envelope, frequency for each normal mode 
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* initial contition: the pluck 
• superposition of normal modes 
• localization, motion, dephasing, rephrasing 

Invert all of this into a description of the physical system. 

Wave Equation: where does it come from? 

Hooke’s Law (for a spring) 
F = –kx 

displacement 

force constant
 

•• 
–1 

1
0 

chop string into small segments 

segment –1 pulls segment 0 down by force 
–k [u(x0) – u(x–1)] 

segment +1 pulls segment 0 up by force 
–k [u(x0) – u(x–1)] 

The net force is 

−k[Δ u10 − Δ u0−1 ]���������� 
d2u

This is 
dx2 

∂2 ∂2u u 

∂x2 ∂t 2 

F = ma (units conversion: contains tension and mass of string) ma (units con 

∂2 ∂2u 1 u
wave equation is = 2 2 ∂t 2∂x v

u is displacement 

v is velocity (as you would discover later) 
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How do we solve this second-order, linear, partial differential equation? 

* look for a similar, exactly slowed problem 
* employ bag of tricks
 

most important trick is separation of variables 


try u(x,t) = X(x) T(t)
 

does it work? If it does not, get u(x,t) = 0 


∂2 ∂21 

not operated onnot operat not operated on 

[ X T)(x (t)] = 2 ∂t 2 [ X )(x T (t)]
∂x2 v

not ope 
∂ ∂

by by
∂x ∂t 

1
Multiply on left by 

X(x)T (t)
 

get
 

1 ∂2 X 1 1 ∂2 T =
 
X(x) ∂x2 v2 T (t) ∂t 2 

only x only t 

x and t are independent variables. This equation can only be valid if both sides are 
equal to a constant. Called the separation constant. 

1 d 2 X 1 1 d 2T = K 2 = K 
X dx2 v T dt 2 

Note we have total not partial derivatives: linear, 2nd-order, and ordinary differential 
equation. 
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general solutions have the form 

+kx –kxK > 0 e , e let K = k2

 OR 
K < 0 sin kx, cos kx let K = –k2 

(always have 2 linearly independent solutions for 2nd-order equation) 

K > 0 general solution X(x) = Aekx + Be–kx 

K < 0 X(x) = C sin kx + D cos kx 

also for T(t) equation 

d 2T = v2KT 
dt 2 

K > 0 T(t) = Eevkt + Fe–vkt 

K < 0 T(t) = G sin vkt + H cos vkt 

Now look at Boundary Conditions 

x0 L 

u(0,t) = 0 
u(L,t) = 0 

For K > 0, try to satisfy boundary conditions 

X(0) = Ae0 + Be−0 = 0 

A + B = 0 A = −B 

X(L) = 0 = AekL + Be−kL = A ekL − e−kL( ) 
kL − e−kLe  can never be 0 

A = 0 u(x,t) = 0 

looks bad. What about K < 0 solutions? 
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X(0) = C sin0 + Dcos0 = 0 

D = 0 

X(L) = C sin kL + 0 = 0 

kL = nπ n = 0,1,2,… 

nπ
“quantization” kn = 

L 

pictures are drawn without looking at equation or using a computer to plot them.

.............. ...... .......................... ...... .......................... .................................. ...... ............. ........................... ...... ...................................... ...... .................. ...... ............................. ...... ............................ .... 
.......

.............................. ...... ............................... ...... ..............................  n = 1  
0 L x 

............ ...... ........... ...... ........... ...... ........... ...... ........... .................... ...... ............ ...... .............. ..... ............. ..... ................
...... ............... .... ..... ................ .....  n = 2................................ .... ........0 L/2 ................ ...... ............. ....... ......... L x ............. ...... ............ ...... ........... ...... ........... ...... ........... ...... ........... ...... ............ ...... 

......... ...... ...... ...... ..... ...... ..... ...... ...... ...... ....... ...... ...... ...... ..... ...... ..... ...... ................... .... ............ ......... ...... ......... ..... ....... ......... .... .......... ..... ......... .... .............
............ .......... .......... ............. .... ..... ............ ..................

.......... ...... ...........  n = 3  
L/3 ........

..... ...... ........ ..... ......... ....
.......... .... 2L/3 x ......... ..... ........ ...... ...... ...... ..... ...... ..... ...... ...... ...... .......

.....
 

• # nodes is n – 1 
• nodes are equally spaced at x = L/n, λn = 2(L/n). 
• all lobes are the same, except for alternating sign 

Wonderful qualitative picture: cartoon 

Now look at T(t) equation for K < 0. 

T (t) = E sinvknt + F cosvknt 

ωn ≡ vkn 

T (t) = E sinω t + F cosω tn n n n
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Normal modes 

⎛ nπ ⎞ 
un (x,t) = ⎜⎝ An sin 

L
x⎟⎠ (En sinnωt + Fn cosnωt ) 

The time dependent factor of the nth normal mode can be rewritten in “frequency, phase” 
form as 

E′ cos [nωt + φ ]
n n 

The next step is to consider the t = 0 pluck of the system. This pluck is expressed as a linear 
combination of the normal modes. 

∞ ⎛ nπ ⎞ 
upluck (x,t) =∑ (AnEn ′ )sin ⎜⎝ x⎟⎠ cos (nωt + φn ) 

n=1 L 

There is a further simplification based on the trigonometric formula 

1
sinacosb = [sin(a + b)+ sin(a − b)]

2 

which enables us to write upluck as 

∞ ⎡AnEn ′ ⎤ ⎧ ⎛ nπ ⎞ ⎛ nπ ⎞ ⎫ 
upluck (x,t) =∑ ⎢ ⎥⎨sin ⎜ x + nωt + φn ⎟ + sin ⎜ x − nωt − φn ⎟ ⎬ 

n=1 ⎣ 2 ⎦⎩ ⎝ L ⎠ ⎝ L ⎠ ⎭ 

Something wonderful happens now. 

* A single normal mode is a standing wave. No left-right motion, no “breathing” 

* A superposition of 2 or more normal modes with different values of n gives more 
complicated motion. For two normal modes, where one is even-n and the other is 
odd-n, the time-evolving wavepacket will exhibit left-right motion. For two normal 
modes where both are odd or both even, the wavepacket motion will be “breathing” 
rather than left-right motion. 

Here is a crude time lapse movie of a superposition of the n = 1 and n = 2 (fundamental and 
first overtone) modes. 
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2π
The period of the fundamental is T = . We are going to consider time-steps of T/8.

ω 

−T/4 ........ ............................................... ........... .................. .... ........... .... ............. ......... ............ ............−T/8 ......... .................... .................... ...... ...... ...... ..... ...... ..... ...... ........... ........... ............ ..... ........... ..... .......... ............ ...... ........... ...... .......... ...... .......... ...... ........... ...... 
time 0 + = 

.................. ...... ................. ...... ................. ...... ................ ...... ................. ...... ................. ....... ........................ .......... ...... ........ ...... ....... ...... ...... ...... ....... ......T/8 ........ ................ .... ......... .... ............ .... ........... ......... ............ .... ........... .....................T/4 

...... ............................................................................. 
............ .........
.... ............. 
.......................
............................................ 

............
...... 

...... ........ .....
....... ........... ............................................... .............. ........ ............ ........... ............................... ......... 

............... 

. ........................ ........................ ....................... ...................... ....................... ........................ ........................

............... ............ .......... ......... ......... ........ ........ ......... .......... ........... 
............. 
............... .
........... ........... ........... ............ ............. ...............

.
............... 
............. 
........... 
......... ........ ........ ....... ........ ......... .......... ............ .............. 

................ ............ ........... ........... ............ ............. ...............

. ........................ ........................ ....................... ...................... ....................... ........................ ........................

 

The time-lapse movie of the sum of two normal modes can be viewed as moving to left at t = 
–T/4, close to the left turning point at t = –T/8, at the left turning point but dephased at t = 0, 
moving to the right at t = +T/8. It will reach the right turning point but dephased at t = T/2. 

In Quantum Mechanics you will see wavepackets that exhibit motion, breathing, dephasing, 
and rephrasing. The “center of the wavepacket” will follow a trajectory that obeys Newton’s 
laws of motion. 

If we generalize from waves on a string to waves on a rectangular drum head, 

b 

0 a 
the separable solution to the wave equation will have the form 

u(x, y, t) = X(x)Y(y)T(t). 

There will be two separation constants, and we will find that the normal mode frequencies 
are 

⎡ n2 m2 ⎤
1/2 

ω = vπ +nm ⎢ 2 b2 ⎥
⎣a ⎦
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This is a more complicated quantization rule than for waves on a string, and it should be 
evident to an informed listener that these waves are on a rectangular drum head with edge 
lengths a and b. 

NON-Lecture 


The underlying unity of the ekx , e–kx and sin kx, cos kx solutions to 

d 2 y = k2 y
dx2 

Let’s take a step back and look at the two simplest 2nd-order ordinary differential equations: 

d 2 y = +k 2 y → y(x) = Aekx + Be− kx 

dx2 

and 

d 2 y = −k 2 y → y(x) = C sin kx + D cos kx 
dx2 

The solutions to these two equations are more similar than they look at first glance. 

Euler’s formula 

± iθ − iθe = cosθ ± isinθ OR 
1 (eiθ + e ) = cosθ 
2 
i iθ(e− iθ − e ) = sinθ. 
2 

So we can express the solution of the second differential equation in (complex) exponential 
form to bring out its similarity to the solution of the first differential equation: 

y(x) = C sin kx + D cos kx 

C e− ikx ikx D eikx − ikx= 
i ( − e ) + 1 ( + e )
2 2 

rearrange 

ikx − ikx=
1 (D - iC)e + 1 (D + iC)e . 
2 2 
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The sin θ, cos θ and eiθ , e–iθ forms are two sides of the same coin.  Insight. Convenience. 
What do we notice? The general solutions to a 2nd-order differential equation consist of the 
sum of two linearly independent functions, each multiplied by an unknown constant. 
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