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Lecture #5: Begin Quantum Mechanics: 
Free Particle and Particle in a 1D Box 

Last time: 

∂2 ∂2u 1 u
1-D Wave equation = 

∂x2 v2 ∂t 2 

* u(x,t): displacements as function of x,t 
* 2nd-order: solution is sum of 2 linearly independent functions 
* general solution by separation of variables 
* boundary conditions give specific physical system 
* “normal modes” — octaves, nodes, Fourier series, “quantization” 
* The pluck: 	superposition of normal modes, time-evolving wavepacket 

Problem Set #2: time evolution of plucked system 
* More complicated for separation of 2-D rectangular drum. Two separation 
constants. 

Today: 	 Begin Quantum Mechanics 

The 1-D Schrödinger equation is very similar to the 1-D wave equation. It is a postulate. 
Cannot be derived, but it is motivated in Chapter 3 of McQuarrie. You can only determine 
whether it fails to reproduce experimental observations. This is one of the weirdnesses of 
Quantum Mechanics. 

We are always trying to break things (story about the Exploratorium in San Francisco). 

1. 	 Operators: Tells us to do something to the function on its right. 

ˆ ˆExamples: Af = g , operator denoted by A  (“^” hat) 

⎧ d 
f (x) =	 f ′(x)⎪⎪ dx 

* take derivative ⎨ d
⎪ ( af (x) + bg(x)) = af ′(x) + bg′(x 
⎩	 

)
⎪ dx	 

linear operator 

* integrate dx af (x) + bg(x)) = a dxf + b d∫ (	 ∫ ∫ xg 

linear operator 

* take square root ( af (x) + bg(x)) = [ af (x) + bg(x)]1/2 

NOT linear operator 

We are interested in linear operators in Quantum Mechanics. (part of McQuarrie’s postulate 
#2) 

2. 	Eigenvalue equations 
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Âf (x) = af (x)
 

a is an eigenvalue of the operator AA . 

f(x) is a specific eigenfunction that “belongs” to the eigenvalue a
 

ˆmore explicit notation Af (x) = a f (x)n	 n n 

Operator 	 An Eigenfunction Its eigenvalue 
dˆ	 axA = e	  a 
dx
 
d 2
 

B̂ = sinbx + cosbx –b2 

dx2 

dˆ	 nC = x ax	 n 
dx 

3. Important Operators in Quantum Mechanics (part of McQuarrie’s postulate #2) 

For every physical quantity there is a linear operator 

coordinate x̂ = x 

∂ 
momentum p̂x = −in (at first glance, this seems surprising. Why?)

∂x
 

∂
2A = p

2m ∂x


kinetic energy T � 2m = −  
n2 2

2 

potential energy V̂ (x) = V (x) 

energy Ĥ = T̂ + V̂ = −  
n2 ∂2

2 
+ V (x)  (the “Hamiltonian”)

2m ∂x

Note that these choices for x̂ and p̂  are dimensionally correct, but their “truthiness” is based 
on whether they give the expected results. 

4. 	 There is a very important fundamental property that lies behind the uncertainty 
principle: non-commutation of two operators. x̂p̂ ≠ p̂x̂

To find out what this difference between x̂p̂  and p̂x̂  is, apply the commutator, 

[ x̂, p̂] ≡ x̂p̂ − p̂x̂ , to an arbitrary function. 
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df df 
x̂pfˆ (x) = x(−in) = −inx 

dx dx 
d ⎡ df ⎤ 

p̂xfˆ (x) = (−in) (xf ) = (−in) f + x⎢ ⎥dx ⎣ dx ⎦
[ x̂, p̂] ≡ x̂p̂ − p̂x̂ = in a non-zero “commutator”. 

We will eventually see that this non-commutation is the reason we cannot sharply specify 
both x and px. 

5. Wavefunctions (McQuarrie’s postulate #1) 

ψ(x): state of the system – contains everything that can be known. Strangely, ψ(x) itself can 
never be directly observed. The central quantity of quantum mechanics is not observable. 
This should bother you! 

* ψ(x) is a “probability amplitude” – similar to the amplitude of a wave (can be positive or 
negative) 

* ψ(x) can exhibit interference 
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* probability of finding particle between x, x + dx is ψ*(x)ψ(x)dx (ψ* is the complex 
conjugate of ψ) 


ˆ
6. Average value of observable A  in state ψ?  Expectation value. (part of McQuarrie’s 

postulate #4) 

ψ *Aψ dx∫ ˆ
A = 

ψ *ψ dx∫ 
Note that the denominator is needed when the wavefunction is not normalized to one. 

ˆ ˆHψ = E ψ ψ  is an eigenfunction of H  that belongs to the specific energyn n n n

eigenvalue, En. (part of McQuarrie’s postulate #5) 

Let’s look at two of the simplest quantum mechanical problems. They are also very 
important because they appear repeatedly. 

1. Free particle: V(x) = V0 (constant potential) 

2 d 2n
Ĥ = −  + V02m dx2 

Ĥψ = Eψ ,  move V0  to RHS 
2 d 2n

− ψ = (E − V0 )ψ 
2m dx2 

d 2 −2m(E − V0 )ψ = 
2 

ψ . 
dx2 n

Note that if E > V0, then on the RHS we need ψ multiplied by a negative number. Therefore 
ψ must contain complex exponentials. This is the physically reasonable situation. 

But if E < V0 (how is such a thing possible?), then on the RHS we need ψ multiplied by a 
positive number. ψ must contain real exponentials. 

e+ kx  diverges to ∞ as x → +∞  ⎫⎪
⎬  unphysical [but useful for x  finite (tunneling)] 

e− kx  diverges to ∞ as x → −∞  ⎪⎭

So, when E > V0, we find ψ(x) by trying ψ = ae+ikx + be–ikx  (two linearly independent terms) 
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d 2ψ ikx + be− ikx= −  k2 (ae )
dx2 

ψ 

2m(E − V0 )
− 

2 
= −  k2 

n
Solve for E, 

nk( )2 

Ek = + V0 . 
2m 

⎧* ψ = aeikx  is eigenfunction of p̂
⎪

You show that 	⎨* with eigenvalue nk 
⎪* and p = nk.⎩

No quantization of E because k can have any real value. 

NON-LECTURE 

ikx + be− ikx ?What is the average value of momentum for ψ = ae

∞ 
dxψ * p̂ψ∫−∞p =	 normalization integral 

∫
∞ 

dxψ *ψ 
−∞ 

∞ − ikx + b * eikx ) d ikx + be− ikx 

= 
∫−∞ 

dx (a * e )(−in ( ae )
dx 

∞ − ikx + b * eikx	 ikx + be− ikx∫−∞ 
dx ( a * e )( ae ) 

− ikx + b * eikx ikx − be− ikx−in∫
∞ 

dx ( a * e ) (ik)( ae )
= −∞ 

∞ 2 + 2 + a *be−2ikx + ab * e2ikxdx a b )∫−∞ ( 
2 2ikx − a *be−2ikx2 −nk 

∞ 
dx  ( a b + ab * e )

= ∫−∞ 
2 + 2 2ikx + a *be−2ikx

∞ 
dx ( a b + ab * e )∫−∞ 

Integrals from –∞ to +∞ over oscillatory functions like e±i2kx are always equal to zero. Why? 

22 −a b 
p = nk 22 +a b 

if a = 0 p = −nk 

if b = 0 p = +nk 
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is fraction of the observations of the system 

in ψ  which have p > 0 

is fraction of the observations of the system 

in ψ  which have p < 0 

END OF NON-LECTURE 
Free particle: it is possible to specify momentum sharply, but if we do that we will find that 
the particle must be delocalized over all space. 

For a free particle, ψ*(x)ψ(x)dx is delocalized over all space. If we have chosen only one 
value of |k|, ψ∗ψ can be oscillatory, but it must be positive everywhere. Oscillations occur 
when eikx is added to e–ikx . 

NON-LECTURE 

ikx + be–ikxψ = ae

ψ∗ψ = |a|2 + |b|2 + 2Re[ab*e2ikx], but if a,b are real 

2 + b2ψ * ψ =  a +  2ab cos2kx 
constant oscillatory 

Note that ψ∗ψ ≥ 0 everywhere. For x where cos 2bx has its maximum negative value, cos 
2kx = –1, then ψ∗ψ = (a–b)2. Thus ψ∗ψ ≥ 0 for all x because (a–b)2 ≥ 0 if a,b are real. 

Sometimes it is difficult to understand the quantum mechanical free particle wavefunction 
(because it is not normalized to 1 over a finite region of space). The particle in a box is the 
problem that we can most easily understand completely. This is where we begin to become 
comfortable with some of the mysteries of Quantum Mechanics. 

* insight into electronic absorption spectra of conjugated molecules. 
* derivation of the ideal gas law in 5.62! 
* very easy integrals 

Particle in a box, of length a, with infinitely high walls. 

“infinite box” 

p̂2 

Ĥ = + V (x)
2m
 

V (x) = 0 0 ≤ x ≤ a ⎤ ∞
 
very convenient because dxψ *V (x)ψ = 0.⎥ ∫V (x) = ∞  x < 0, x > a⎦ – ∞ 

(convince yourself of this!) 
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ψ(x) must be continuous everywhere. 


ψ(x) = 0 everywhere outside of box otherwise 
∞

ψ *Vψ = ∞  .
( ∫−∞ )
ψ(0) = ψ(a) = 0 at edges of box. 

Inside box, this looks like the free particle, which we have already solved. 

Ĥψ = Eψ  Schrödinger Equation 

2 d 2n
− ψ = Eψ  (V(x) = 0 inside the box)

2m dx2 

d 2
 

ψ = − 2m 
2 Eψ = −k2ψ
 

dx2 n


2mE
k2 ≡ 

2n

ψ (x) = Asin kx + Bcos kx satisfies Schrödinger Equation (it is the general solution) 

Apply boundary conditions: 

ψ(0) = B = 0 therefore B = 0 

ψ(a) = A sin ka = 0 therefore A sin ka = 0 (quantization!)
 

nπ

ka = nπ k = n is an integer 

a
 
nπ
ψ = Asin x 
a 

a 
dxψ *ψ = 1 normalize ∫0 

a nπ
A2 dx sin2 x = A2 a 

= 1∫0 a 2
 

⎛ 2 ⎞
1/2
 

A = ⎜ ⎟⎝ a ⎠

⎛ 2 ⎞
1/2 

nπ 
 is the complete set of eigenfunctions for a particle in a box. Nowψ n = ⎜ ⎟ sin x

⎝ a ⎠ a
 

find the energies for each value of n. 
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2 1/2 n d 2 ⎛ 2 ⎞ nπ
Ĥψ = −  sin xn ⎜ ⎟2m dx2 ⎝ a ⎠ a 

n2 ⎛ nπ ⎞
2 

= +  ψ⎜ ⎟ n2m ⎝ a ⎠

h2 2n
= 

2 
ψ n . 8ma

h2 

E = n2 = n2E1 n = 1,2,3… (never forget this!) n 8ma2 

E1 

n = 0 means the box is empty 
what would a negative value of n mean? 

  
a/3

  
a/2 

  2a/3 

E3 = 9E1 two nodes

E2 = 4E1 one node 

h2 
E1 = 8ma zero nodes 2 

0 x a 

n–1 nodes, nodes are equally spaced. All lobes between nodes have the same shape. 
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Summary: 

Some fundamental mathematical aspects of Quantum Mechanics. 
Initial solutions of two-simplest Quantum Mechanical problems. 

* Free Particle 
* Particle in an infinite 1-D box 

Next Lecture: 
1. * more about the particle in 1-D box 

* Zero-point energy (this is unexpected)
 * ΔxΔp vs. n (n = 1 gives minimum uncertainty) 

2. particle in 3-D box 
* separation of variables 
* degeneracy 
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