Lecture \#8: Quantum Mechanical Harmonic Oscillator

Last time
Classical Mechanical Harmonic Oscillator

* $\quad V(x)=\frac{1}{2} k x^{2}$ (leading term in power series expansion of most $\mathrm{V}(x)$ potential energy functions)
* x is displacement from equilibrium ($x=0$ at equilibrium)
* angular frequency $\omega=[k / \mu]^{1 / 2}$
* $\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}$ reduced mass

From $F=m a$ we get $\frac{d^{2} x}{d t^{2}}=-\frac{k}{m} x \quad[$ we get $x(t)$ from this, not from $\psi(x)]$
$x(t)=A \sin \omega t+B \cos \omega t=C \sin (\omega t+\phi)$
get A, B or C, ϕ from initial conditions of pluck
turning point $x_{ \pm}(E)= \pm\left(\frac{2 E}{k}\right)^{1 / 2} \quad$ from $E=V\left(x_{ \pm}(E)\right)$
ν, ω, τ
$T(t), \bar{T}$ (kinetic energy)
$V(t), \bar{V}$ (potential energy)

Today

* simplify Schrödinger Equation to get rid of constant factors
* solution: Gaussian envelope \times Hermite polynomials
* pictures
* semiclassical interpretation (not in most texts): combination of classical mechanics with $\lambda(x)=h / p(x)$ (a unique source of insight)
* vibrational transition intensities and "selection rules"

Quantum Mechanical Harmonic Oscillator (McQuarrie, Chapters 5.5, 5.8-10)

$$
\begin{aligned}
\widehat{H} & =\hat{T}+\hat{V}=\frac{\hat{p}^{2}}{2 \mu}+\frac{1}{2} k \hat{x}^{2} \\
& =-\frac{\hbar^{2}}{2 \mu} \frac{\partial}{\partial x^{2}}+\frac{1}{2} k \hat{x}^{2}
\end{aligned}
$$

We can "clean up" this equation by making the substitution

$$
\begin{aligned}
& \xi=\alpha^{1 / 2} x \quad \text { where } \alpha=(k \mu)^{1 / 2} / \hbar \quad(\xi \text { is dimensionless, } \\
& \text { which makes the equation "universal") } \\
& \frac{\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial x^{2}}=\frac{\hbar^{2}}{2 \mu} \alpha \frac{\partial^{2}}{\partial \xi^{2}}=\frac{\hbar}{2}\left(\frac{k}{\mu}\right)^{1 / 2} \frac{\partial^{2}}{\partial \xi^{2}}=\frac{\hbar}{2} \omega \frac{\partial^{2}}{\partial \xi^{2}} \\
& {\left[\text { because } \frac{\partial}{\partial x}=\frac{\partial}{\partial \xi} \frac{\partial \xi}{\frac{\partial x}{\alpha^{1 / 2}}}\right]} \\
& \frac{1}{2} k x^{2}=\frac{1}{2} k\left(\frac{1}{\alpha}\right) \xi^{2} \\
& =\frac{1}{2}\left(\frac{k}{\mu}\right)^{1 / 2} \hbar \xi^{2}=\frac{1}{2} \hbar \omega \xi^{2} \\
& \widehat{H}=\frac{\hbar \omega}{2}\left[-\frac{\partial^{2}}{\partial \xi^{2}}+\xi^{2}\right] \quad \text { (much simpler form) } \\
& \widehat{H} \psi(\xi)=E \psi(\xi) \\
& 0=\left[-\frac{\partial^{2}}{\partial \xi^{2}}+\xi^{2}-\frac{2 E}{\hbar \omega}\right] \psi \quad \begin{array}{l}
\text { (entire differential equation, except } \\
\psi, \text { is dimensionless) }
\end{array}
\end{aligned}
$$

One can convert this into the Hermite differential equation by making the substitution $\psi(\xi)=e^{-\xi^{2} / 2} f(\xi)$ and finding a new differential equation for $\mathrm{f}(\xi)$. The reason for doing this is that $e^{-\xi^{2} / 2}$ ensures that $\psi \rightarrow 0$ as $|\xi| \rightarrow \infty$. Note that letting $\xi^{2} \rightarrow \infty$ means that $2 \mathrm{E} / \hbar \omega$ is negligible with respect to ξ^{2}. What is the solution to the differential equation if we ignore the $\frac{2 E}{\hbar \omega}$ term? GaUSSIan

This is a very clean form of the Schrödinger equation because all of the k, μ-specific factors are absorbed into a dimensionless ξ variable. Why would we want this?

The Hermite polynomials (in integer powers of ξ) are solutions to the differential equation

$$
\frac{d^{2} H_{n}}{d \xi^{2}}-2 \xi \frac{d H_{n}}{d \xi}+2 n H_{n}=0 . \quad \text { (Hermite equation) }
$$

There are very convenient "recursion relations" that relate the $\mathrm{H}_{\mathrm{n}-1}$ to the H_{n}, etc.

$$
\frac{d H_{n}}{d \xi}=2 n H_{n-1}(\xi)
$$

This looks like the effect of \hat{p} on H_{n} (because the leading term in H_{n} is ξ^{n}).

$$
\begin{gathered}
H_{n+1}(\xi)=2 \xi H_{n}(\xi)-2 n H_{n-1}(\xi), \text { rearranging } \\
\xi H_{n}(\xi)=\frac{1}{2} H_{n+1}(\xi)+n H_{n-1}(\xi) .
\end{gathered}
$$

This looks like the effect of $\hat{\mathrm{x}}$ on H_{n}. We will use this second recursion relation to compute integrals of the form

$$
\int d \xi \psi_{n}^{*} \xi^{m} \psi_{p} .(n, m, p \text { are integers })
$$

These recursion relations enable us to evaluate all integrals of the form

$$
\int \psi_{v}\left(\hat{x}^{n} \hat{p}^{m}\right) \psi_{v+\ell} d x
$$

(we will postpone the actual evaluation until next lecture) and we derive the "selection rule" for nonzero integrals

$$
\ell=n+m, n+m-2, \ldots-(n+m)
$$

There is also a general expression (Rodrigues formula) for the H_{n}

$$
H_{n}(\xi)=(-1)^{n} e^{\xi^{2}} \frac{d^{n}}{d \xi^{n}} e^{-\xi^{2}}
$$

The Hermite equation is a well known (to mathematicians) differential equation. The solutions of the Schrödinger equation are
 number $v=0,1,2, \ldots$

* Normalized
* $\psi_{v}(\pm \infty)=0$
* $\Psi_{\nu}(0)=0$ for odd- v (odd function)
$\left.* \frac{d \psi_{v}}{d x}\right|_{x=0}=0$ for even $-v$ (even function), to be worked out
$E_{v}=\hbar \omega(v+1 / 2)$
What do we know about orthogonality? Based on results derivable from postulates?
Non-degenerate eigenvalues.

$$
\int d x \psi_{v}^{*} \psi_{v^{\prime}}=\delta_{v v^{\prime}} \quad \text { orthonormal }
$$

Semi-Classical Picture - applicable to all 1-dimensional problems for insight, prediction, and obtaining $\psi(x)$ without solving any differential equation.

Classical: $\quad \mathrm{T}(x)=E-V(x)=p(x)^{2} / 2 \mu$

$$
\mathrm{p}(x)=[2 m(E-V(x))]^{1 / 2}
$$

$p(x)$ is momentum in classical mechanics but just a convenient function in quantum mechanics.

$$
\bigoplus
$$

Quantum: de Broglie $\lambda=\frac{h}{p}$ valid not just for free particle or a piecewise constant potential

Semi-classical: $\quad \lambda(x) \equiv \frac{h}{p_{\text {classical }}(x)}$

* pair of nodes nearest to x are spaced by $\lambda(x) / 2$.

Qualitative Shapes of $\psi_{v}(x)$:

* exponentially damped envelope, extending into non-classical regions (!!!!)
* oscillations within classically allowed region with number of internal nodes equal to the quantum number
* even v, even function, antinode at $x=0$
* outer lobes (near x_{+}and x_{-}) are largest [see McQuarrie, page 226, Fig. 5.10 right side]
* envelope within classically allowed region resembles what you expect from classical mechanics

$$
\begin{aligned}
& \psi^{*}(x) \psi(x) d x \propto \frac{d x}{\mathrm{v}_{\text {classical }}} \quad \text { (slow speed } \leftrightarrow \text { high probability) } \\
& \mathrm{v}_{\text {classical }}=p_{\text {classical }} / \mu=\frac{1}{\mu}\{2 \mu[E-V(x)]\}^{1 / 2}
\end{aligned}
$$

To get the proportionality constant, consider the fraction of time the particle is found between x and $x+d x$:

$$
\begin{aligned}
& \frac{\text { time }(x \rightarrow x+d x)}{\text { time }\left(x_{-} \text {to } x_{+}\right)}=\left\{\begin{array}{c}
\text { probability of finding particle moving } \\
\text { to right between } x \text { and } x+d x
\end{array}\right\}=\frac{d x / \mathrm{v}_{\text {classical }}(x)}{\tau / 2} \\
& \tau=\frac{1}{v}=\frac{2 \pi}{\omega}=2 \pi\left(\frac{\mu}{k}\right)^{1 / 2}\left[v=\omega / 2 \pi, \omega=[k / \mu]^{1 / 2}\right] \\
& \psi^{*}(x) \psi(x) d x=\frac{d x}{\left(\mathrm{v}_{\text {classical }}\right)(\tau / 2)}=\frac{d x}{\left\{\frac{2}{\mu}[E-V(t)]\right\}^{1 / 2}} \frac{1}{\pi}\left(\frac{\mu}{k}\right)^{-1 / 2}=\left[\frac{k / 2 \pi^{2}}{E-V(x)}\right]^{1 / 2} d x \\
& \Psi^{*}(x) \psi(x)=\left[\frac{k / 2 \pi^{2}}{E-V(x)}\right]^{1 / 2} \quad \text { gives the classical average of } \psi^{*}(x) \psi(x) \text { near } x
\end{aligned}
$$

(but not the phase). [To get the classical envelope, assume that the maximum value of $\psi^{*} \psi$ is twice the average value. [This is always a good approximation for a rapidly oscillating always positive function.] Thus the envelope of $\psi^{*}(x) \psi(x)$ envelope is $\left.\left[\frac{2 k / \pi^{2}}{E-V(x)}\right]^{1 / 2}\right]$.

* node spacing
(1) recall $\lambda=\frac{h}{p(x)}$, use classical ideas to qualitatively locate nodes,
(2) nodes are closest together when p is largest (near $x=0$), envelope and node spacing allows you to sketch $\psi^{*}(x) \psi(x)$ without solving a differential equation.
or compute a "phase integral" $\frac{\Delta x}{\lambda(x)}=\frac{1}{2}$ (want to find value of Δx that is equal to $\lambda / 2$, the distance between nodes)
replace $\lambda(x)$ by $h / p(x)$. We get
$p(x) \Delta x=\frac{h}{2}$ as the distance, Δx, between nodes $\left[\right.$ more accurately, $\left.\int_{x}^{x+\lambda / 2} d x p(x)=\frac{h}{2}\right]$
phase integral $\frac{2}{h} \int_{x_{1}}^{x_{2}} p_{E}(x) d x$ tells us how many nodes there are between x_{1} and x_{2} at energy E. This is the same as knowing how many bound energy levels lie at or below E.

(a)
(b)

FIGURE 5.10
(a) The normalized harmonic-oscillator wave functions. (b) The probability densities for a harmonic oscillator. As in Figure 5.7, the potential energy is indicated by the parabolas in (a) and (b).

TABLE 5.3
The First Few Hermite Polynomials ${ }^{\text {a }}$

$H_{0}(\xi)=1$	$H_{1}(\xi)=2 \xi$
$H_{2}(\xi)=4 \xi^{2}-2$	$H_{3}(\xi)=8 \xi^{3}-12 \xi$
$H_{4}(\xi)=16 \xi^{4}-48 \xi^{2}+12$	$H_{5}(\xi)=32 \xi^{5}-160 \xi^{3}+120 \xi$

a. The variable ξ is equal to $\alpha^{1 / 2} x$, where $\alpha=(k \mu)^{1 / 2} / \hbar$.

TABLE 5.4
The First Few Harmonic-Oscillator Wave Functions, Equation $5.44^{\text {a }}$

$$
\begin{array}{ll}
\psi_{0}(x)=|0\rangle=\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{-\alpha x^{2} / 2} & \psi_{2}(x)=|2\rangle=\left(\frac{\alpha}{4 \pi}\right)^{1 / 4}\left(2 \alpha x^{2}-1\right) e^{-\alpha x^{2} / 2} \\
\psi_{1}(x)=|1\rangle=\left(\frac{4 \alpha^{3}}{\pi}\right)^{1 / 4} x e^{-\alpha x^{2} / 2} & \psi_{3}(x)=|3\rangle=\left(\frac{\alpha^{3}}{9 \pi}\right)^{1 / 4}\left(2 \alpha x^{3}-3 x\right) e^{-\alpha x^{2} / 2}
\end{array}
$$

a. The parameter $\alpha=(k \mu)^{1 / 2} / \hbar$.

McQuarrie, Donald A. Quantum Chemistry. 2nd ed. Sausalito, CA: University Science Books, 2007. Used with permission.

* non-classical tails [(extend into region where $\mathrm{E}<\mathrm{V}(x)$]
* x_{+}lobe positive by convention
* lobes nearest x_{-}and x_{+}largest
* nodes closest together near $x=0$
* no zero crossings in classically forbidden region

What about pictures of $\psi^{*}(x) \psi(x)$?

What do we do with these HO wavefunctions?

1. calculate relative intensities of vibrational transitions
2. Use perturbation theory (Lectures \#14, \#15 and \#18) to compute consequences of higher than quadratic terms in $\mathrm{V}(x)$
e.g. for Morse oscillator

Spectral intensities

Two contributions to vibrational overtone transitions

* mechanical anharmonicity (Morse potential)
* electronic anharmonicity (higher derivatives of $\mu(x)$)

In the following we will look only at the electronic anharmonicity contributions.

$$
\begin{aligned}
& \int d x \psi_{v_{f}}^{*}\left[\mu_{0}+\mu_{1} x+\frac{1}{2} \mu_{2} x^{2}\right] \psi_{v_{i}}=\mu_{0} \int d x \underbrace{\psi_{v_{v}}^{*} \psi_{v_{i}}}_{\substack{\text { ortho- } \\
\text { normal } \\
\delta_{v_{f} v_{i}}}} \\
& +\mu_{1} \underbrace{\int d x \psi_{v_{f}}^{*} x \psi_{v_{i}}}_{\substack{\text { see recusion } \\
\text { relationship }}}+\frac{\mu_{2}}{2} \int d x \psi_{v_{f}}^{*} x^{2} \psi_{v_{i}} \\
& H_{n+1}(\xi)=2 \xi H_{n}(\xi)-2 n H_{n-1}(\xi) \\
& \underbrace{\xi H_{n}(\xi)}_{x \Psi_{v}}=\frac{1}{2} \underbrace{H_{n+1}}_{\psi_{v+1}}(\xi)+n \underbrace{H_{n-1}}_{\psi_{v-1}}(\xi) \\
& \text { selection rule: } \Delta v= \pm 1
\end{aligned}
$$

for x^{2} term (evaluate in two steps)

$$
\begin{aligned}
\xi^{2} H_{n} & =\frac{1}{2} \xi H_{n+1}+n \xi H_{n-1} \\
& =\frac{1}{2}\left(\frac{1}{2} H_{n+2}+(n+1) H_{n}\right)+n\left(\frac{1}{2} H_{n}+(n-1) H_{n-2}\right) \\
\Delta v & =0, \pm 2
\end{aligned}
$$

$\overline{\text { Next time: } \mathbf{a}^{\dagger}, \mathbf{a} \text { treatment }}$

MIT OpenCourseWare
http://ocw.mit.edu

5.61 Physical Chemistry

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

