

1

Matlab Handout 2 – Matrices

Like vectors, matrices in Matlab have both mathematical (linear algebraic) and
computational natures. Matlab can perform a large number of Matrix
operations/calculations. But individual matrix entries can be treated like individual
variables – in this way the matrix is just a two-dimensional array of variables.

1) creating, assigning and accessing values –
Just like with vectors, brackets “[]” are used to create matrices (see “help paren”, “help
punct”). Also like in vectors, the standard input is by rows. Within the brackets, the
rows of the matrix are separated by a semi-colon “;”. For example:

2x2 matrix a = [1 2; 3 4]
2x3 matrix a = [1 2 3; 4 5 6]
3x2 matrix a = [1 2; 3 4; 5 6]

The semi-colon denotes the end of each row. Each row has to be the same length,
otherwise Matlab will give you an error (i.e. a = [1 2 3; 4 5; 6 7 8] will not work).

Another way to create matrices is to enter them by their individual entries. In vectors, we
saw that “a(3)” accessed the third entry of the vector. It could also be used to assign
values to the third entry as in “a(3) = 4”. The same can be done with matrices, except
now we need to specify the row and the column. For example, to access the the entry in
the third row, and the fourth column of a matrix, you would use “a(3,4)”. To build a
matrix this way you could use:

b(1,1) = 1 puts a value of 1 into the row 1 column 1 entry
b(1,2) = 2 puts a value of 2 into the row 1 column 2 entry
b(2,1) = 3 puts a value of 3 into the row 2 column 1 entry
b(2,2) = 4 puts a value of 4 into the row 2 column 2 entry

This is a slightly tedious way of creating a matrix, but it illustrates the important point of
accessing individual entries, and the array nature of Matlab’s matrices. This can be
useful if you need to calculate individual matrix elements, and then put them into a
matrix. A good way to automate this process is to use a script file, and for loops. For
example, you could create a script file with the following:

clear
for n = 1:10
 for m = 1:10
 a(n,m) = m*sqrt(n);
 end
end
a

2

In the above, we accessed an individual entry. We can generalize this, and instead of
accessing or working on an individual entry, work on whole columns or rows of the
matrix. We do this using the colon “:” operator (see “help colon”). For example:

clear
a(1,:) = [1 2 3 4]
a(2, :) = [5 6 7 8]

is equivalent to

a = [1 2 3 4; 5 6 7 8]

Let’s dissect the above command. We know that in the statement “a(n, m)” that the first
number (n) indicates the row, and the second number (m) indicates the column. In the
statement “a(1, :)”, we’ve indicated we want to work on the first row. Normally, we
would have put a number after the comma “,” but this time we’ve used a colon “:”. The
colon tells Matlab that instead of working on only one column, we want to
simultaneously access all of the available columns of the matrix “a”. If we haven’t yet
created matrix “a” then our first statement defines the numbers of columns that “a” will
have. If we have already created a matrix “a”, then the number of columns in our first
statement has to match the number of columns which the existing matrix “a” already has.

We can define a matrix by columns instead of rows by switching the position of the
colon:

b(:,1) = [1 2 3 4]’
b(:,2) = [5 6 7 8]’

note the apostrophe after the bracket – without this apostrophe, we would be telling
Matlab to assign a row of numbers to a column, which Matlab can’t make any sense of.

We can also use the above statements to copy, access, select, etc. segments of matrices.
Our “b” matrix above has 2 columns and 4 rows. If we want to get the first row, we
could use:

c = b(1, :)

This tells Matlab to assign a vector to “c” that is made up of the first row of the matrix
“b” (in this case [1 5]).

We can also get just a section of a column of a matrix. We would do this by:
c = b(2:4, 1)

3

Instead of using either the colon, or an individual number to indicate the row(s) we’re
interested in, we’ve used the statement “2:4”. This tells matlab we want the rows two
through 4.

You might recognize the statement 2:4 as also one which tells matlab to generate a vector
[2 3 4]. It is actually doing the exact same thing in this case!! In generalizing from
accessing individual entries, to rows and columns, we make the same sort of change in
the type of entry we are accessing in a matrix. So instead of using just a number to
indicate which row, we can give Matlab a list of rows, in the form of a vector. For
example, look at the following set of commands:

clear
a = [1 2 3 4]
a(2,:) = [5 6 7 8]
a(3,:) = [9 10 11 12]
a(4,:) = [13 14 15 16]

the matrix “a” then looks like:
 1 2 3 4
 5 6 7 8
 9 10 11 12
 13 14 15 16

we could access the bottom right quadrant of “a” using the command:
a(3:4,3:4)

or the top right quadrant by:
a(1:2,3:4)

or the top left quadrant by:
a(1:2, 1:2)

We could access the last column by
a(:,4)

or the last three entries of the last column by
a(2:4,4)

or the first and last entries of the last column by
a([1 4], 4)

We could get the last column, but reverse the order by
a(4:-1:1,4)
or
a([4 3 2 1], 4)

4

we could get the 2nd and 4th columns, by
a(:, [2 4])

or the 2nd and 4th columns in reverse order by
a(4:-1:1, [2 4])

Basically you can use any integer valued vector in the parenthesis above to access values
in a matrix. Besides being integers, the values must be positive, and they must not
exceed the size of the matrix.

2) Matrix Operators
Basically, these are similar to the cases for vectors, except now we have two dimensions.
Again, there are two major classifications: vector operators and array operators.

Vector operators
+ and - addition and subtraction. The two matrices must have the same shape,

each individual entry is added together, and the resulting entry is placed in
a new matrix. For example:

clear
a(1,:) = [1 2 3]
a(2,:) = [4 5 6]
a(3,:) = [7 8 9]
b(1,:) = [11 12 13]
b(2,:) = [14 15 16]
b(3,:) = [17 18 19]

c = a + b
would yield
[12 14 16]
[18 20 22]
[24 26 28]

* matrix multiplication. This is based on the linear algebraic definition:

 ⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++

++
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
5043
2219

8*46*37*45*3

8*26*17*25*1

87
65

*
43
21

Another way to remember this is that it is the vector dot product between
the rows of the first matrix, and the columns of the second matrix:

5

⎡ 5 ⎛ ⎞
⎢(

⎛ ⎞ 6 ⎤
1 2)• ⎜ ⎟ (1 2⎜ ⎟)• ⎜ ⎟⎜ ⎟⎥7 8⎢ ⎝ ⎠ ⎝ ⎠⎥

= ⎢ ⎥
⎢ ⎛5⎞ ⎛6⎞⎥
⎢(3 4)• ⎜ ⎟ 3 4 • ⎜ ⎟⎜ ⎟ () ⎜ ⎟⎥⎢ 7⎠ ⎝8⎣ ⎝ ⎠⎦⎥

Similar to vector multiplication (dot product, inner product) the matrices
must have complementary shapes. This can be seen by looking at the dot
products in the above definition. The matrices must have dimensions such
that the dot products in the above definition are feasible. For example:

⎡ ⎛ 7 ⎞ ⎛ 8 ⎞⎤
⎢ ⎜ ⎟ ⎜ ⎟(1 2 3)• ⎜ 9 ⎟ (⎥1 2 3⎢)• ⎜10⎟⎥

⎡ 7 8 ⎤ ⎢ ⎜ ⎟ ⎜ ⎟11 12 ⎥
⎡1 2 3 ⎝ ⎠ ⎝ ⎠⎤ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ * 9 10 =⎢ ⎥ ⎢ ⎥⎣4 5 6⎦ ⎢ 12⎥ ⎢ ⎛ 7 ⎛ 8 ⎞⎣11 ⎞⎦ ⎥⎜ ⎟ ⎜ ⎟⎢(4 5 6)• 9 ⎥⎜ ⎟ (4 5 6)• ⎜10⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎢⎣ ⎝11⎠ ⎝12⎠⎥⎦

will work, because the vectors in the dot products have the correct
complementary shapes. Another way to check this is to see if the inner
dimensions of the matrices agree. In the above case, we have a matrix
with dimensions (2,3) times a matrix with dimensions (3,2). The inner
dimensions are the rows of the first matrix and the columns of the second
matrix, and in this case they are both 3. The size of the resulting product
matrix is determined by the outer dimensions (in this case, a 2 x 2 matrix).
Switching the order of multiplication will also still work (since then the
inner dimensions will be 2), but will produce a 3 x 3 matrix.

Try creating the above matrices (the 2x2 matrices first, then the 2x3 and
3x2 matrices), and try multiplying them together, and also mixing them up
(ie 2x2 * 2x3, 2x2 * 3x2)

The first important special case of matrix multiplication is when a matrix
is multiplied by a vector. Following the rules above, we know that the
inner dimensions must agree – so the following two multiplications would
be valid:

⎡7⎤
⎡1 2 3⎤ ⎢ ⎥
⎢ ⎥ * 8⎢ ⎥⎣4 5 6⎦ ⎢⎣9⎥⎦

 [] ⎥
⎦

⎤
⎢
⎣

⎡
654
321

*87

(2x3) (3x1) (1x2) (2x3)

6

This operation is also called a transformation – the matrix is said to
transform the vector. First, try to predict the shape of resulting vectors
from these operations. Then carry them out in Matlab.

A second important case of matrix multiplication occurs when you take
the outer product of two vectors. In contrast to the previous case of
vector multiplication, in which we multiplied a row vector times a column
vector, in the outer product we multiply a column vector by a row vector.
This follows the exact rules of matrix multiplication as above – a column
vector is treated like a matrix which has only 1 column, and a row vector
is treated like a matrix that has only 1 row. To illustrate:

clear
a = [1 2]
b = [3 4]’

The inner product:
a*b

would yield “11”.

The outer product:
b*a

would be calculated by:

[] ⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=•⎥

⎦

⎤
⎢
⎣

⎡
84
63

2*41*4

2*31*3
21

4
3

and yields a 2 x 2 matrix. We could have predicted this by looking at our
“matrix” dimensions: (2,1) x (1,2). First, the inner dimensions agree
(they are both 1). Second, the outer dimensions are both 2, indicating a
2x2 matrix will be produced1.

This will become important when you work on density operators in
quantum.

Array Operators
.* ./ .^ array multiply, divide, and “raise to the power of”. The matrices must

have the same shape. These work in exactly the same way as for vectors –
the individual elements are multiplied together to yield the new elements
of the new matrix. For example:

1 If instead the dimensions had been (2,1) x (1,3) we would have produced a 2 x 3 matrix.

7

clear
a(1,:) = [1 2]
a(2,:) = [3 4]

b(1,:) = [5 6]
b(2,:) = [7 8]

a.*b
would yield

5 12
21 32

a./b
would yield

0.2 0.3333
0.4286 0.25

and a.^b
would yield

1 64
2187 65536

3) Matrix Functions
a) Vector functions extend to matrices
The same functions we called “vector functions” all work on matrices. When operating
on a matrix they generally treat each column of the matrix as a vector, and perform their
operation on those columns individually. The functions listed before for vectors were:

size This gives direct information on the number of rows & columns in
a matrix. It returns a row vector with 2 entries, the first of which
indicates the number of rows, the second indicating the number of
columns

 length for matrices, this returns the largest dimension, not that useful.

 max returns a row vector whose entries indicate what the maximum

value in each of the columns of the matrix are
min returns a row vector whose entries indicate what the maximum

value in each of the columns of the matrix are

sort sort in ascending order. Returns a matrix of the same shape with

each column of the matrix sorted in ascending order.

8

sum returns a row vector which indicates the result of summing each
column of the matrix

Use the following:

clear
a = [1 2 3; 4 5 6; 7 8 9];

and carry out the above functions on a:
size(a)
length(a)
max(a)
etc…

b) Matrix creation functions
There are some functions which are mainly used in the creation of matrices (see “help
elmat”). The major ones are

 zeros creates a matrix which is filled with the number zero. For

example, the statements:

zeros(4,4)
or
zeros([4 4])

create the matrix:
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ones works exactly the same as zeros, excepts creates a matrix filled the

number 1. Try

ones(4,4)
or
ones([4 4])

 eye works like the above, except it creates the Identity matrix:
 eye([4 4])

 creates:

 1 0 0 0
 0 1 0 0
 0 0 1 0

9

 0 0 0 1

 diag works on diagonals in matrices. Can be used to create matrices

with specific entries along the diagonal, or can be used to extract
specific diagonals from a matrix. To start with, let’s look at
extracting diagonals from an exisiting matrix “a” from above:

diag(a)
returns the diagonal of a, [1 5 9] (but in column form)

diag(a,-1)
returns the diagonal 1 unit below the main diagonal. In this case,
that would be [4 8]

diag(a,1)
returns [2 6]

diag(a,2)
returns [3]

diag(a,3)
returns an empty matrix, because there is no diagonal 3 entries
away from the main diagonal.

Now let’s look at creating a new matrix, by putting entries on or
near the diagonal:

diag([1 2 3])
creates the following matrix:
 1 0 0
 0 2 0
 0 0 3

Our input vector (“[1 2 3]”) is used as the argument to the diag
function, which puts it along the diagonal of a matrix.

We don’t have to put our vectors on the main diagonal; we can
also offset them slightly:

diag([1 2 3], 1) diag([1 2 3], -1) diag([1 2 3], 2)
creates: creates: creates:
 0 1 0 0 0 0 0 0 0 0 1 0 0
 0 0 2 0 1 0 0 0 0 0 0 2 0
 0 0 0 3 0 2 0 0 0 0 0 0 3
 0 0 0 0 0 0 3 0 0 0 0 0 0

10

 0 0 0 0 0
1 above the main 1 below the main
diagonal diagonal 2 above the main diagonal

Diversion

Let’s go back to our wavefunction example from handout 1. Let’s calculate the first ten
wavefunctions, but this time let’s store them in a matrix/array. We could use the
following commands in a script file:

clear
dx = 0.1; %this sets the increment for the x-axis
L = 10; %this sets the box length for the particle in a

%box

x = 0:dx:L; %this creates the x-axis, incremented by dx,

%ending at L

num_pts = length(x); %this figures out how many points are along

%the x-axis

num_basis_funs = 10; %this creates a variable, and gives it the

%value 10. This is intended to be
 %represent the number of basis functions
 %we are using

basis_funs = zeros(num_basis_funs,num_pts); %this creates a

%num_basis_funs by
 %num_pts size matrix (10 x
 %101).
 %We have 10 row vectors,
 %each of which
 %will contain the data for
 %a basis function.

for n = 1:num_basis_funs
 basis_funs(n,:) = sqrt(2/L)*sin(n*pi*x/L); %this calculates each
 %basis function
end %and stores it in an
 %array

for n = 1:num_basis_funs
 n %this displays the value of the
 %variable n

 dx*basis_funs*basis_funs(n,:)' %this calculates the overlap
 %integral between
 %the "n" basis function and all of
 %the other
 %basis functions.
 figure(n)

11

 clf
 plot(x,basis_funs(n,:)) %these lines bring up/create a window,
 %clear it
 %and plot a basis function in it
 pause
end

Try saving this script as “bfun.m” and running it. Some key points:
i) use variables as constants. Try not to use “hard” numbers in the calculations. Any
variable you might want to adjust later on should have a variable, that is assigned a value
at the beginning, so that it is easy to change it and then re-run the script (ie – we can
easily change the size of the box L, the x-axis increment dx, or even the number of basis
functions)

ii) Comments – the percent symbol “%” tells Matlab to ignore all the text that follows it
on that line. This is incredibly useful for explaining what you are trying to do on a given
line. This has a large number of benefits -
1) If you type out what you are trying to do, it will help clarify it in your own mind.
2) If you give the code to someone else to look at, it will help them understand it
3) If you ever have to come back anytime in the future and use the code again, it will
help you understand what you were trying to do!

Don’t underestimate the value of number of 3. In an extreme case, I once wrote some
code, and when I tried to come back to it a mere week later, I had no idea what I was
trying to do!! (that’s me really being weak-minded, but it illustrates the point).

iii) the line “dx*basis_funs*basis_funs(n,:)'”
now we see another example of the matrix speed of matlab. With this innocuous looking
line, we instantly calculate 10 integrals!!! To understand how, remember that the middle
part, “basis_funs” is a matrix with dimensions (num_basis_funs, num_pts). The last part
of the line “basis_funs(n,:)’” is a vector of length “num_pts”. The entries in the vector
that are generated as a result of the matrix-vector multiplication are the result of the dot
product between the each row of the matrix “basis_funs” and the vector
“basis_funs(n,:)’”. We know from the last handout that this dot product is the Riemann
sum of the overlap integral. The “dx” factor in front is also from the Riemann sum, as
described before. The net result: a one-line operation calculates whether or not our basis
functions are ortho-normal!

To further help understand this operation, here’s a schematic of the matrices involved:

12

⎡first value⎤
⎢ ⎥⎡ first value of the last value of the ⎤ nth basis

⎢ ⎢ ⎥⎥first basis function first basis function ⎢ function ⎥⎢ ⎥
⎢ ⎢ ⎥⎥dx * * ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥first value of the last value of the ⎢last value ⎥⎢ ⎥ ⎢ ⎥
⎣⎢ tenth basis function tenth basis function⎥ nth basis ⎦ ⎢ ⎥

⎣⎢function ⎦⎥

 this is the matrix “basis_funs” (10x101) this is “basis_funs(n,:)
 (101x1)

The first dot product will be between the first row of the matrix “basis_funs”, and the
column vector “basis_funs(n,:)”. When this is multiplied by “dx”, we see that it is the
overlap integral between the two functions. The second dot product will be between the
second row of the matrix, and the column vector. This is repeated up to the tenth row.
The resulting answer we see will be a column vector with 10 entries, each one
corresponding to the overlap integral between each of the 10 basis functions & the
supplied basis function in the column vector.

Now let’s make a final script, which takes advantage of the fact that we’ve already
calculated our basis functions using “bfun.m” above. In this script we’ll create a
superposition state wavefunction which is normalized and composed of the basis
functions. Warning: this script will not work unless the above script is run first.

k = 1:num_basis_funs;
del_psi = 1;
k_not = 3;
psi_k = exp(-((k-k_not)/del_psi).^2); %this creates a vector psi,

%which
 %we will use for our weighting
 %coefficients of our basis
 %functions

norm_const = sqrt(psi_k*psi_k');
psi_k = psi_k/norm_const; %this calculates the normalization
 %constant of our psi function,
 %and then applies it so that psi
 %is normalized.
figure(1)
clf
plot(psi_k)

psi_x = psi_k*basis_funs; %this line multiplies the elements of

%psi_k
 %by their corresponding basis function
 %and then, for each index, sums them

13

 %together

figure(2)
clf
plot(x,psi_x)

dx*basis_funs*psi_x' %this calculates the overlap integral
 %between
 %our wavepacket and each of the component
 %basis functions.

The new idea here mainly lies in the statement “psi_x = psi_k*basis_funs”. To illustrate
this matrix multiplication:

⎡ first value of the last value of the ⎤
⎢ ⎥first basis function first basis function⎢ ⎥

⎡first value last value⎤ ⎢ ⎥
⎢ ⎥ *
⎣psi_k psi_k ⎢⎦ ⎥⎢ ⎥first value of the last value of the⎢ ⎥

⎣⎢ tenth basis function tenth basis function⎦⎥

psi_k, (1x10) basis_funs(10x101)

In this case we see that the first dot product will be between the first column of the matrix
“basis_funs”, and the row vector “psi_k”. What exactly is the first column of the matrix?
It is the value of each of the basis functions at the first point on the x axis we chose (in
this case x = 0). This dot product then corresponds to the “psi_k” weighted sum of the
values of each basis function, evaluated at x = 0. This then is repeated for the rest of the
points/values of x for which we have calculated our basis functions. Based on the outer
dimensions of the above multiplication, we see that we expect the result to be a (1x101)
matrix. Each of the entries then corresponds to the wavepacket at each of the 101 points.

c) Matrix calculations see “help matfun”
The operations generally only work on square matrices. There are three main ones:

 det calculates the determinant of a square matrix. Using matrix “a”

from above,

det(a)

would be calculated by:

14

1 2 3
5 6 4 6 4 5

4 5 6 = 1* − 2* + 3*
8 9 7 9 7 8

7 8 9
= [5*9 − 6*8]− 2*[4*9 − 6*7]+ 3*[4*8 − 5*7]
= [− 3]− 2*[− 6]+ 3*[− 3]
= 0

 inv calculates the inverse of the matrix. An inverse matrix is defined

such that the expression
a*inv(a)

 or
 inv(a)*a

 yields the identity matrix
 try the following commands:
 inv(a)
 a*inv(a)

eig Arguably the single most important Matlab function, as far as 5.61
is concerned. This calculates the eigenvalues & eigenvectors of a
matrix. That is to say, it solves the following equation:

bbA λ=⋅
where A is a matrix, b is a column vector (known as the
“eigenvector”), and λ is a constant (the “eigenvalues”). Solving
this equation is said to “diagonalize A”, which means that it allows
you to transform A such that the resulting matrix only has entries
along the main diagonal. This is done by finding a matrix P such
that in the following equation

A = P*D*P-1

the matrix D will be diagonal. The eigenvalues λ (from the first
equation) are along the diagonal of the matrix D, and the
eigenvectors b from the first equation are the columns of the
matrix P.

The eig function in matlab takes as an argument your matrix A
which you wish to diagonalize. It will then return either just the
eigenvalues λ, or it will return both the eigenvalues and the matrix
P, which contains the eigenvectors.

For a concrete example:

clear

15

a = diag(ones(1,5),-1) + diag(ones(1,5),1)
eig(a)

produces a column vector which contains the eigenvalues of the
matrix “a”. Make sure you understand how the matrix “a” was
created in the above. Also, note the fact that the eigenvalues are
not sorted.
Now try:

[P D] = eig(a)

in this case a matrix “P” and a matrix “D” are created. “P”
contains the eigenvectors in its columns, “D” has the eigenvalues
along its diagonal. To see this try:

diag(D)

this should give the same list of eigenvalues as above. Also, try
the following:

a*P(:,1)

This statement is multiplying the first eigenvector times our
original matrix “a”. If the everything worked out correctly, this
should produce the vector “P(:,1)” (the first column of the matrix
“P”) times a constant. In order to verify this, we should divide the
above statement by that constant – the first eigenvalue (this is
stored in the first entry in the matrix “D”), and compare the
resulting vector to our original vector. Try:

P(:,1)
D(1,1)
a*P(:,1)/D(1,1)

are the two vectors the same?

One last bit of useful information is about sorting eigenvalues. In
quantum, eigenvalues correspond to interesting physical quantities
(momentum, energy, etc.) so it’s nice to have these sorted, rather
than trying to make sense of a somewhat random list. To see a
sorted list of our above eigenvalues, we would use

sort(diag(D))

16

This is easier to work with, but if we then keep using the sorted list
we have a problem, because now we don’t know which
eigenvalues are associated with which eigenvectors. In order to
rectify this, we need to use a more advanced feature of the sort
function. If we use the statement

[y indices] = sort(diag(D))

then we create two vectors. The first vector “y” contains the list of
sorted values, the second vector “indices” contains the
corresponding list of indices which the values in “y” had when
they were in their original, pre-sorted vector. For example,

[y indices] = sort([20 15 5])

gives us a “y” vector that looks like
[5 15 20]

and an “indices” vector that looks like
[3 2 1]

The first entry of “y” is a 5. In our original vector, this was the
third entry, so the first entry in “indices” is a 3. The second entry
of “y” is a 15, this was the second entry of the original vector, so
the second entry of “indices” is a 2. The third entry of “y” is a 20,
which was in the first spot originally, so the third entry of
“indices” is a 1.

Calculate by hand what you would expect “y” and “indices”
would be for the vector
[16 18 15 4 8]
then plug it into matlab and compare results, to make sure you
understand what sort is doing.

Back to our original problem. Let’s take the raw data we have in
the matrices “P” and “D”, and created sorted versions. First,

[D_sorted D_indices] = sort(diag(D))
D_sorted = diag(D_sorted)

The first line creates the sorted list of eigenvalues. The second line
takes that sorted vector list, creates a matrix with it along the
diagonal (the diag command), and then overwrites the original
D_sorted vector with the new matrix.

17

Now we need to sort our eigenvectors. Let’s start with the
eigenvector corresponding to the lowest valued eigenvector. We’ll
put this in the first column of our “P_sorted” matrix:

P_sorted(:,1) = P(:,D_indices(1))

The first part “P_sorted(:,1)” tells Matlab that we’re working on
the first column of the “P_sorted” matrix. The second part tells us
that we want the column of “P” given by the first entry of the
vector “D_indices”. From above, we know that the first entry of
“D_indices” should give us the location of the eigenvector which
had the lowest valued eigenvalue.
Now we can repeat, for the higher values

P_sorted(:,2) = P(:,D_indices(2))
P_sorted(:,3) = P(:,D_indices(3))
P_sorted(:,4) = P(:,D_indices(4))
P_sorted(:,5) = P(:,D_indices(5))
P_sorted(:,6) = P(:,D_indices(6))

Now we should have successfully created our sorted eigenvector
matrix. To test this, try the following

P_sorted(1,:)
a*P_sorted(1,:)/D_sorted(1,1)

This is the same test we performed above – we’re just comparing
the eigenvector original with the eigenvector after the calculation,
divided by the eigenvalue.

You might remember that you can change the way a matrix is
arranged by using a vector to designate the order of the entries you
want to look at. Perhaps the most powerful application of this is to
the above, in which case we can simplify the creation of our
“P_sorted” matrix. This is done by using the following statement:

P_sorted = P(:,D_indices)

In this statement, we’ve used the vector D_indices to indicate the
order we want to display/assign the matrix P. This then is assigned
to the matrix “P_sorted”. This is exactly identical to the above
operations we performed, but you can see it saves a lot of time.

MIT OpenCourseWare
http://ocw.mit.edu

5.61 Physical Chemistry
Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

