5.61 Fall 2017
Problem Set #3

1. A. McQuarrie, page 120, #3-3.
B. McQuarrie, page 120, #3-4.
C. McQuarrie, page 182, #4-11.

2. McQuarrie, pages 121-122, #3-11.

3. A. McQuarrie, page 123, #3-17.
B. McQuarrie, page 127, #3-36.

4. A. McQuarrie, page 122, #3-12. Answer this problem qualitatively by
drawing a cartoon for n =2 and n = 3 states.

B. Is there a simple mathematical/physical reason why the probabilities are
not 1/4 for all four regions: 0 <x<a/4,a/l4<x<a/2,a/2 <x<3a/4, and
3a/4<x<a?

[HINT: where are the nodes in ,(x)?]

5. Solve for the energy levels of the particle confined to a ring as a crude model for
the electronic structure of benzene. The two dimensional Schrodinger Equation,
in polar coordinates, is

Pl1o( 9, 19

——| == r— |+ 5 =—+U(r, =Evy.
Zy[rar(rarj (r )}l’ v

For this problem, U(r,¢) = o« for r # a, but when » = a, U(a,$) = 0.

A. This implies that y(r,¢) = 0 for r # a. Why?

B. If w(r,0) = 0 for  # a, then %\5 = (0. What is the simplified form of the

Schrodinger Equation that applies when the particle is confined to the
ring?

C. Apply the “periodic” boundary condition that y(a,d) = y(a,d + 27) to
obtain the £, energy levels.

D. The C—C bond length in benzene is 1.397 A. Thus a circle which goes
through all 6 carbon atoms has a radius » = 1.397 A. Use this to estimate
the n =2 <— n =1 electronic transition for “benzene” treated as an electron
on aring. The longest wavelength allowed electronic transition for real
benzene is at 2626 A. Explain why the agreement is not perfect.
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6. 1-Dimensional Infinite Wells with Steps

Consider the potential

V(x)=o0 x<0,x>a

V(x)=0 0<x<al/2
h2

Vix)=V, = 2(2)2 al/2<x<a
8ma

A. Sketch V(x) vs. x.
B. What are the boundary conditions for y(x) at x = 0 and x = a?
C. What requirements must be satisfied at x =a/2?

D. Solve for the n =2 (one node) and n = 3 (two nodes) y,(x) eigenfunctions
of H and E, energy levels.

Hints: (i) For 0 <x<a/2, Pi(x) = Asin kix
k =[2mE/n?]"

(i) Fora/2<x<a, Yi(x) = B sin k;(a—x)
k, =[2mE-V,)/n*]"

(i) yi(al2) = Asin(k a/2)
Yn(a/2) = B sin(ky a/2)
v, Ak, cos(k a/2)
dx x=a/2
dy,
dx

:__BKIGXXKIa/Z)

x=al2

E. Compare your values of £, and E3 to what you obtain from the de Broglie
quantization condition

al2 al?2
+
A

(n/2)=

n,I n,II

h=h/p=2n/k=h[2m(E-V(x))]"

F. For the n =2 and n = 3 energy levels, what are the probabilities, P, and
P, of finding the particle in the 0 < x < a/2 region?
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G. (optional) Will the n = 2 and 3 energy levels of the V1(x) and V>(x)
potentials (defined below) be identical, as suggested by part E? Why?

Vix): Vi(x)=c x<0,x>a
Vi(x)=0 0<x<al/2
Vix)=V, al/2<x<a

versus
V,(x): V,(x)=o0 x<0,x>a
V,(x)=0 0<x<a/4,3a/4<x<a
V,(x)=YV, ald<x<3al4

H. Solve for the n =1 y,(x) and E, for V.

HINTS: Fora/2<x< a, WII(x) = BeKH(a*x) + Ce*'(n(a*x)
xy=[2m(V,~E)/n*]"

I (optional) 1s E, for V; larger or smaller than E, for V,? Why? A cartoon
will be helpful.
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