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Lecture #11 Supplement: Nonstationary States of Quantum 
Mechanical Harmonic Oscillator 

Last time 
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̂p = 2−1/2 i â† − â( )
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âψ v = v[ ]1/2 ψ v−1  , e.g. â3ψ v = v v − 1( ) v − 2( )[ ]1/2 ψ v−3

â†ψ v = v + 1[ ]1/2 ψ v+1  , e.g. a†10
ψ v = v + 10( )… v + 1( )[ ]1/2 ψ v+10

 

 
What is so great about â, â† ? 
Born with selection rule and values of all integrals attached! 
 

 

dx∫ ψ v
* â†( )m â( )nψ v+n−m = v + n − m( ) v + n − m − 1( )…(v − m + 1)

n  terms
  (v − m + 1)… v − 1( ) v( )

m  terms
 ⎡

⎣⎢
⎤
⎦⎥

1/2

â†( )m â( )n → vf − vi = m − n

 

 
Suppose you want dx∫ ψ v+2

* Opψ v ≠ 0 ?  Then Op could be â†2  or â†3â  (in any order). 
 
Suppose you have p̂3  and want ψ v+3 p̂

3ψ v  integral?  Only a total of 3 multiplicative â or â†  
factors possible, therefore you need only keep â†3  term. 
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Today  A taste of Wavepacket Dynamics. 
 

• Coherent superposition state 
dephasing 
rephasing:  partial or complete rephasing 

• 〈x〉t, 〈p〉t Ehrenfest’s Theorem — “center” of wavepacket follows Newton’s laws. 
• Tunneling through a barrier 

 
All of this is very qualitative, but forms a transparent basis for intuition. 

 
Imagine, at t = 0, a state of the system is created that is not an eigenstate of  H . 
 

* Half harmonic oscillator 
* Gaussian wavepacket (velocity = 0) transferred by photon excitation from one 

potential energy curve to another electronic state potential curve at a value of x 

where dVexcited
dx

≠ 0  

* molecule created in “wrong” vibrational state (i.e. a vibrational eigenstate of the 
neutral molecule is not a vibrational eigenstate of the ion) by sudden 
photoionization 

 
What happens? 
 
Insights come from a special class of problem where the energy levels have the special property: 
 
 En = (integer)Ecommon factor 
 
 particle in box  En = E1n

2  

 harmonic oscillator 

 

En = E0 + nω = ω
2
E0


2n + 1( )  
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Ψ x,0( ) = cn
n
∑ ψ n (x)

Ψ x,t( ) = cn
n
∑ ψ n (x)e− iEnt 

The probability density is

P x,t( ) ≡ Ψ * x,t( )Ψ x,t( ) = cn
n,m
∑ cmψ nψm e− i En−Em( )t ( )

= cn
2

n
∑ ψ n

2 + cn
n≠m
∑ cmψ nψm e− i En−Em( )t ( )

=
n
∑ cn

2ψ n
2

static
term

 
+

n>m
∑ 2cncmψ nψm cosωnmt

oscillating term “coherence”
 

 

  positive at all x regions of + and – vs. x 
 
P(x,t) must be ≥ 0 and real at all x for all t.  Why? 
Normalization: 

dx∫ Ψ *Ψ = cn
2

n
∑ = 1  

Note, we get rid of all x information only 
when we integrate over x. For example, the 
energy 

No time dependences, Ψ is normalized, and ψn, 
ψm are orthogonal.  Normalization is conserved. 

 
H = E = dx∫ Ψ * HΨ = cn

2

n
∑ En  

No time dependence of E
E is conserved.

⎧
⎨
⎩

 

 
Look at P(x,t) probability distribution. 
 
What are some special times? 
 

cosωt = 1, 0, −1  
 
 
  

expand in complete basis set, 
where {ψn} are eigenfunctions of 

.  WHY is this convenient and 
instructive? 

assume all {ψn} and {cn} are real 

ωt = 2nπ 
ωt = (2n + 1)  ωt = (2n + 1)π 

all real, not complex 
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If all ωnm are multiples of a common factor, call it ωgr (gr = “grand rephasing”) 
 

when tgr =
2nπ
ω

Ψ x,tgr( ) = Ψ x,0( )  

when 

 

tagr
anti-
grand

rephasing


= 2n + 1( )π

ω
, 

 
most of the coherence terms have opposite sign to what they had at 
t = 0.  Usually this means that wavepacket is localized at the other 
side of center. 

 

 
At 

tgr + tagr
2

= π
2ω

+ 2nπ
ω

, all ψnψm cross terms are = 0, the only surviving terms are ψ n
2 , and 

these are + everywhere, thus the probability is distributed over the entire region. 
 
This is the “dephased” situation.  The evolution is sequential:  phased up, dephased, phased 
“down”, repeat. 
 
Suppose you compute  x̂ and p̂ . 
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Non-Lecture 

 

Ψ(x,t) = cn
n=0

nmax

∑ ψ ne
− iEnt 

Ψ*Ψ = cn
m=0

mmax

∑
n=0

nmax

∑ cmψ nψme
− iωnmt

= cn
2ψ n

2

n=0

nmax

∑ + cn
n,m>n

mmax

∑ cmψ nψm e− iωmnt + eiωmnt[ ]

= cn
2ψ n

2

n=0

nmax

∑ + cn
m>n

mmax

∑ cmψ nψm 2cosωmnt( )

x̂ t = ∫ dxΨ*x̂Ψ = 0 + 2cn
n=0
∑ cn+1 cosωt ∫ dxψ n x̂ψ n+1

 

 

∫ dxψ n x̂ψ n+1 =

2µω

⎛
⎝⎜

⎞
⎠⎟
1/2

[n +1]1/2

x̂ t = 2

2µω

⎛
⎝⎜

⎞
⎠⎟
1/2

cosωt ∑ cncn+1(n +1)
1/2⎡

⎣
⎢

⎤
⎦
⎥

= Acosωt
 

A similar analysis for p̂x t  gives B sin ωt. 

For HO, there are especially simple selection rules for x̂  and p̂ :  the ψ v f
* ψ vi integrals follow the 

∆v = ±1 selection rule. 
 
Before integration over x, only need to keep the terms ψ vψ v+1 cosωt

ψ vψ v−1 cosωt
⎞

⎠

⎟
⎟

 

 

Phase convention for ψv 
chosen so that these products 
are  
+ at x near x+ 
– at x near x– 

(xnn = 0) 
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There is no variation of ω with E for Harmonic Oscillator. 
 
All of the coherence terms in HO give 
 〈x〉t ∝ A cos ωt 
 〈p〉t ∝ B sin ωt 
 
Does this look familiar? 
Just like classical HO 
 
d
dt x

= 1
m

px

v = p / m
d
dt

px = − ∇V (x)

ma = F

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 Ehrenfest's Theorem
here, v is velocity, not
vibrational quantum number

⎛
⎝⎜

⎞
⎠⎟

 

 
Center of wavepacket moves according to Newton’s equations! 
 
Tunneling 
 

 
 
For a thin barrier, all ψv with node in middle (odd v) hardly feel barrier.  They are shifted to 
higher E only very slightly.   
 
The ψv with a maximum at x = 0 (even v) all feel the barrier very strongly. They are shifted up 
almost to the energy of next higher level, if the energy of HO ψv lies below top of barrier.  
 
Why do I say that the barrier causes all HO energy levels to be shifted up? 
[We will return to this problem once we have discovered non-degenerate perturbation theory.] 
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We see some evidence for this difference in energy shifts for odd vs. even-v levels by thinking 
about ½ HO. 
 

 
This half-HO oscillator only has levels at E1, E3 of the full oscillator so v = 0 of ½ oscillator is at 
the energy of v = 1 of the full oscillator. 
 
So a barrier causes even-v levels to shift up a lot relative to the next higher odd-v level. 
 

 
 

 
Suppose we make ψ1, ψ0 two-state superposition. 
 

0

1

2

3

4

5

2
3

4

5

1
0

almost back
to normal

small

Energy levels of HO with
finite height barrier in the middle

Energy Levels of 
Ordinary HO

∆0,1

medium
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Ψ * x,t( )Ψ x,t( ) = c0
2ψ 0

2 + c1
2ψ1

2 + 2c1c2ψ 0ψ1 cos∆ 01 t

∆ 0,1 = E1 − E0


∆ 0,1  is small( )

 

 
What does ψv=0 eigenstate look like? 

 

 
 
 

  
 
Zero nodes (tried but barely fails to have one node). It resembles the v = 1 state of no-barrier 
oscillator. 
 
Ψ1,0 (x,0) = 2

−1/2 ψ1(x) + ψ 0 (x)[ ]  looks like this at t = 0 
 

 
Ψ1,0

* x,t( )Ψ1,0 x,t( ) = 1
2
ψ 0
2 + 1

2
ψ1
2 + ψ1ψ 0 cos∆ 0,1 t  

 
We get oscillation of nearly perfectly localized wavepacket right – left – right ad infinitum. 
 
 * ∆0,1 is small so period of oscillation is long  (it is the energy difference between the 

v = 0 and v = 1 eigenstates of the harmonic plus barrier potential) 
 
Similarly for 3,2 wavepacket. 
 
 * left/right localization is less perfect 
 * oscillation is faster because ∆2,3 is larger 
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shifted slightly up in E
but � is hardly distorted.
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MESSAGE:  As you approach top of barrier, tunneling gets faster. 
 
 
Tunneling is slow (small splittings of consecutive pairs of levels) for high barrier, thick barrier, 
or at E far below top of barrier. 
 
Can use pattern of energy levels (∆0,1 and ∆2,3) observed in a spectrum (frequency-domain) to 
learn about time-domain phenomena (tunneling). 
 
“Dynamics in the frequency-domain.” 
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