Last time

$$\hat{x} = \left[\frac{\mu\omega}{\hbar}\right]^{1/2} \hat{x}$$

$$\hat{p} = \left[\hbar\mu\omega\right]^{-1/2} \hat{p}$$

$$\hat{a} = 2^{-1/2} \left(i\hat{p} + \hat{x}\right)$$

$$\hat{a}^{\dagger} = 2^{-1/2} \left(-i\hat{p} + \hat{x}\right)$$

$$\hat{x} = 2^{-1/2} \left(\hat{a}^{\dagger} + \hat{a}\right)$$

$$\hat{p} = 2^{-1/2} i \left(\hat{a}^{\dagger} - \hat{a}\right)$$

$$\hat{x} = \left(\frac{\hbar}{2\mu\omega}\right)^{1/2} \left(\hat{a}^{\dagger} + \hat{a}\right)$$

$$\hat{p} = \left(\frac{\hbar\mu\omega}{2}\right)^{1/2} i \left(\hat{a}^{\dagger} - \hat{a}\right)$$

$$\hat{a}\psi_{v} = \left[v\right]^{1/2} \psi_{v-1}, \text{ e.g. } \hat{a}^{3}\psi_{v} = \left[v(v-1)(v-2)\right]^{1/2} \psi_{v-3}$$

$$\hat{\mathbf{a}}^{\dagger} \Psi_{\nu} = [\nu + 1]^{1/2} \Psi_{\nu+1} , \text{ e.g. } \widehat{\mathbf{a}^{\dagger}}^{10} \Psi_{\nu} = [(\nu + 10)...(\nu + 1)]^{1/2} \Psi_{\nu+10}$$

What is so great about $\hat{\mathbf{a}}, \hat{\mathbf{a}}^{\dagger}$?

Born with selection rule and values of all integrals attached!

$$\int dx \psi_{v}^{*}(\hat{\mathbf{a}}^{\dagger})^{m}(\hat{\mathbf{a}})^{n} \psi_{v+n-m} = \left[\underbrace{(v+n-m)(v+n-m-1)...(v-m+1)(v-m+1)...(v-1)(v)}_{n \text{ terms}}\right]^{1/2}$$

$$(\hat{\mathbf{a}}^{\dagger})^m (\hat{\mathbf{a}})^n \rightarrow v_f - v_i = m - n$$

Suppose you want $\int dx \psi_{v+2}^* \mathbf{Op} \psi_v \neq 0$? Then \mathbf{Op} could be $\hat{\mathbf{a}}^{\dagger 2}$ or $\hat{\mathbf{a}}^{\dagger 3} \hat{\mathbf{a}}$ (in any order).

Suppose you have \hat{p}^3 and want $\psi_{v+3}\hat{p}^3\psi_v$ integral? Only a total of 3 multiplicative $\hat{\mathbf{a}}$ or $\hat{\mathbf{a}}^{\dagger}$ factors possible, therefore you need only keep $\hat{\mathbf{a}}^{\dagger 3}$ term.

Today A taste of Wavepacket Dynamics.

- Coherent superposition state
 dephasing
 rephasing: partial or complete received
 - rephasing: partial or complete rephasing
 - $\langle x \rangle_t, \langle p \rangle_t$ Ehrenfest's Theorem "center" of wavepacket follows Newton's laws.
- Tunneling through a barrier

All of this is very qualitative, but forms a transparent basis for intuition.

Imagine, at t = 0, a state of the system is created that is not an eigenstate of \widehat{H} .

- * Half harmonic oscillator
- * Gaussian wavepacket (velocity = 0) transferred by photon excitation from one potential energy curve to another electronic state potential curve at a value of x where $\frac{dV_{\text{excited}}}{dx} \neq 0$
- * molecule created in "wrong" vibrational state (i.e. a vibrational eigenstate of the neutral molecule is not a vibrational eigenstate of the ion) by sudden photoionization

What happens?

Insights come from a special class of problem where the energy levels have the special property:

 $E_n = (integer) E_{\text{common factor}}$

particle in box $E_n = E_1 n^2$ harmonic oscillator $E_n = E_0 + n\hbar\omega = \frac{\hbar\omega}{2}(2n+1)$

Г

$$\Psi(x,0) = \sum_{n} c_{n} \Psi_{n}(x)$$
expand in complete basis set,
where { ψ_{n} } are eigenfunctions of
 \widehat{H} . WHY is this convenient and
instructive?

$$\Psi(x,t) = \sum_{n} c_{n} \Psi_{n}(x) e^{-iE_{n}t/\hbar}$$
assume all { ψ_{n} } and { c_{n} } are real
The probability density is

$$P(x,t) \equiv \Psi^{*}(x,t)\Psi(x,t) = \sum_{n,m} c_{n} c_{m} \Psi_{n} \Psi_{m} \left(e^{-i(E_{n}-E_{m})t/\hbar} \right)$$

$$= \sum_{n} c_{n}^{2} \Psi_{n}^{2} + \sum_{n \neq m} c_{n} c_{m} \Psi_{n} \Psi_{m} \left(e^{-i(E_{n}-E_{m})t/\hbar} \right)$$
all real, not complex
positive at all x
regions of + and - vs. x

P(x,t) must be ≥ 0 and real at *all x* for *all t*. Why? Normalization:

$$\int dx \Psi * \Psi = \sum_{n} c_n^2 = 1$$

Note, we get rid of all *x* information only when we integrate over x. For example, the energy

$$\langle \widehat{H} \rangle = \langle E \rangle = \int dx \Psi * \widehat{H} \Psi = \sum_{n} c_{n}^{2} E_{n}$$

Look at P(x,t) probability distribution.

What are some *special times*?

$$\cos \omega t = 1, \quad 0, \quad -1$$

$$\omega t = 2n\pi$$

$$\omega t = (2n+1)\frac{\pi}{2}$$

$$\omega t = (2n+1)\pi$$

No time dependences, Ψ is normalized, and ψ_n , ψ_m are orthogonal. Normalization is conserved.

 $\begin{cases} \text{No time dependence of } \langle E \rangle \\ \text{E is conserved.} \end{cases}$

If all ω_{nm} are multiples of a common factor, call it ω_{gr} (gr = "grand rephasing")

when
$$t_{gr} = \frac{2n\pi}{\omega}$$
 $\Psi(x,t_{gr}) = \Psi(x,0)$
when

$$t_{agr}_{\text{anti-grand}\atop \text{grand}\atop \text{grand}} = \frac{(2n+1)\pi}{\omega} \,,$$

most of the coherence terms have opposite sign to what they had at t = 0. Usually this means that wavepacket is localized at the other side of center.

At $\frac{t_{gr} + t_{agr}}{2} = \frac{\pi}{2\omega} + \frac{2n\pi}{\omega}$, all $\psi_n \psi_m$ cross terms are = 0, the only surviving terms are ψ_n^2 , and these are + everywhere, thus the probability is distributed over the entire region.

This is the "dephased" situation. The evolution is sequential: phased up, dephased, phased "down", repeat.

Suppose you compute $\langle \hat{x} \rangle$ and $\langle \hat{p} \rangle$.

Non-Lecture

$$\Psi(x,t) = \sum_{n=0}^{n} c_n \Psi_n e^{-iE_n t/\hbar}$$

$$\Psi^* \Psi = \sum_{n=0}^{n} \sum_{m=0}^{max} c_n c_m \Psi_n \Psi_m e^{-i\omega_{nm}t}$$

$$= \sum_{n=0}^{n} c_n^2 \Psi_n^2 + \sum_{n,m>n}^{max} c_n c_m \Psi_n \Psi_m [e^{-i\omega_{mm}t} + e^{i\omega_{mm}t}]$$

$$(x_m = 0) = \sum_{n=0}^{n} c_n^2 \Psi_n^2 + \sum_{m>n}^{max} c_n c_m \Psi_n \Psi_m (2\cos\omega_{mn}t)$$

$$\langle \hat{x} \rangle_t = \int dx \Psi^* \hat{x} \Psi = 0 + \sum_{n=0}^{n} 2c_n c_{n+1} \cos\omega t \int dx \Psi_n \hat{x} \Psi_{n+1}$$

$$\int dx \Psi_n \hat{x} \Psi_{n+1} = \left(\frac{\hbar}{2\mu\omega}\right)^{1/2} [n+1]^{1/2}$$

$$\langle \hat{x} \rangle_t = 2 \left(\frac{\hbar}{2\mu\omega}\right)^{1/2} \cos\omega t \left[\sum_{n=0}^{n} c_n c_{n+1} (n+1)^{1/2}\right]$$

$$= A\cos\omega t$$

A similar analysis for $\langle \hat{p}_x \rangle_t$ gives $B \sin \omega t$.

For HO, there are especially simple selection rules for \hat{x} and \hat{p} : the $\psi_{v_f}^* \psi_{v_i}$ integrals follow the $\Delta v = \pm 1$ selection rule.

 $\psi_{v}\psi_{v-1}\cos\omega t$

Before integration over x, only need to keep the terms $\psi_v \psi_{v+1} \cos \omega t$

Phase convention for ψ_v chosen so that these products are + at x near x_+ - at x near x_- There is no variation of ω with *E* for Harmonic Oscillator.

All of the coherence terms in HO give

 $\langle x \rangle_t \propto A \cos \omega t$ $\langle p \rangle_t \propto B \sin \omega t$

Does this look familiar? Just like classical HO

 $\frac{d}{dt} \langle x \rangle = \frac{1}{m} \langle p_x \rangle$ v = p / m $\frac{d}{dt} \langle p_x \rangle = -\langle \nabla V(x) \rangle$ ma = FEhrenfest's Theorem

 $\begin{pmatrix} \text{here, } v \text{ is velocity, not} \\ \text{vibrational quantum number} \end{pmatrix}$

Center of wavepacket moves according to Newton's equations!

Tunneling

For a thin barrier, all ψ_v with node in middle (odd *v*) hardly feel barrier. They are shifted to higher E only <u>very</u> slightly.

The ψ_v with a maximum at x = 0 (even v) all feel the barrier very strongly. They are shifted up almost to the energy of next higher level, if the energy of HO ψ_v lies below top of barrier.

Why do I say that the barrier causes all HO energy levels to be shifted up? [We will return to this problem once we have discovered non-degenerate perturbation theory.] We see some evidence for this difference in energy shifts for odd vs. even-v levels by thinking about $\frac{1}{2}$ HO.

This half-HO oscillator only has levels at E_1 , E_3 of the full oscillator so v = 0 of $\frac{1}{2}$ oscillator is at the energy of v = 1 of the full oscillator.

So a barrier causes even-v levels to shift up a lot relative to the next higher odd-v level.

Suppose we make ψ_i, ψ_i two-state superposition.

 $\Psi^{*}(x,t)\Psi(x,t) = c_{0}^{2}\Psi_{0}^{2} + c_{1}^{2}\Psi_{1}^{2} + 2c_{1}c_{2}\Psi_{0}\Psi_{1}\cos\Delta_{01}t$ $\Delta_{0,1} = \frac{E_{1} - E_{0}}{\hbar} \qquad (\Delta_{0,1} \text{ is small})$

What does $\psi_{y}=0$ eigenstate look like?

Zero nodes (tried but barely fails to have one node). It resembles the v = 1 state of no-barrier oscillator.

 $\Psi_{1,0}(x,0) = 2^{-1/2} [\Psi_1(x) + \Psi_0(x)]$ looks like this at t = 0

We get oscillation of nearly perfectly localized wavepacket right – left – right *ad infinitum*.

* $\Delta_{0,1}$ is small so period of oscillation is long (it is the energy difference between the v = 0 and v = 1 *eigenstates* of the harmonic plus barrier potential)

Similarly for 3,2 wavepacket.

* left/right localization is less perfect

* oscillation is faster because $\Delta_{2,3}$ is larger

MESSAGE: As you approach top of barrier, tunneling gets faster.

Tunneling is slow (small splittings of consecutive pairs of levels) for high barrier, thick barrier, or at E far below top of barrier.

Can use pattern of energy levels ($\Delta_{0,1}$ and $\Delta_{2,3}$) observed in a spectrum (frequency-domain) to learn about time-domain phenomena (tunneling).

"Dynamics in the frequency-domain."

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

5.61 Physical Chemistry Fall 2017

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.