5.61 Lecture \#17 Rigid Rotor I

Read McQuarrie: Chapters E and 6.

Rigid Rotors - molecular rotation and the universal angular part of all central force problems - another exactly solved problem. The rotor is free, thus $\widehat{H}=\widehat{T} \quad(V=0)$.

Once again, we are more interested in:

* E_{J} and $\langle\hat{J}\rangle_{t}$
$*$ effects of $\widehat{\mathbf{J}}^{2}, \widehat{\mathbf{J}}_{z}, \widehat{\mathbf{J}}_{ \pm}=\widehat{\mathbf{J}}_{x} \pm i \widehat{\mathbf{J}}_{y}$ ("raising" and "lowering" or "ladder" operators)
* qualitative stuff about shape (nodal surfaces) of $\psi_{J M}(\theta, \phi)$
than we are in the actual form of $\psi_{J M}(\theta, \phi)$ and in the method for solving the rigid rotor Schrödinger Equation.

Next Lecture - no differential equation, no ψ, just:

* $\left[\mathbf{J}_{i}, \mathbf{J}_{j}\right]=i \hbar \sum_{k} \varepsilon_{i j k} \mathbf{J}_{k} \quad$ definition of an angular momentum operator
* $\mathbf{J}^{2} \psi_{J M}=\hbar^{2} J(J+1) \psi_{J M}$
* $\mathbf{J}_{z} \psi_{J M}=\hbar M \psi_{J M}$
* $\mathbf{J}_{ \pm}=\mathbf{J}_{x} \pm i \mathbf{J}_{y}$
* $\mathbf{J}_{ \pm} \psi_{J M}=[J(J+1)-M(M \pm 1)]^{1 / 2} \psi_{J M \pm 1}$

The standard problem is for the motion of a mass point constrained to the surface of a sphere. However, we are really interested in the rotational motion of a rigid diatomic molecule. Mass point is the same as one end of a rotor (length r_{0}, mass μ) with bond axis extending from the coordinate origin at the Center of Mass.

For a molecule, there are two coordinate systems: the body-fixed system denoted by x, y, z and the laboratory-fixed system denoted by X, Y, Z.

What are we going to want to remember?

1. $E(J, M)$
2. What do J, M mean about

$$
\text { NOT the same! }\left\{\begin{array}{l}
* \text { location of } \vec{J} \\
* \text { location of internuclear axis }
\end{array}\right\} \text { distributions }
$$

3. qualitative stuff about shape of $\psi_{J, M}(\theta, \phi)$
$\left.\begin{array}{l}\text { \# of nodes } \\ \text { locations of nodes }\end{array}\right]$ surfaces
where is the internuclear axis?
"reduced" pictures of $\psi_{J, M}(\theta, \phi)$
4. Selection rules and values of integrals of $\mathbf{J}^{2}, \mathbf{J}_{Z}, \mathbf{J}_{ \pm}$

Rotor is free

$$
V\left(r=r_{0}^{\gamma}, \theta, \phi\right)=0, \quad V\left(r \neq r_{0}, \theta, \phi\right)=\infty
$$

Need to keep track of only $\widehat{T}(\theta, \phi)$ because $\widehat{V}=0$ when $r=r_{0}$

$$
\begin{aligned}
\widehat{H} & =\widehat{T} \\
\text { for } 1-\mathrm{D} \quad \widehat{T} & =\frac{\hat{p}^{2}}{2 \mu} \quad \text { linear momentum }
\end{aligned}
$$

For rotor we want angular rather than linear momentum. From classical mechanics:

$$
\vec{L}=\vec{r} \times \vec{p}
$$

$r_{0}=r_{1}+r_{2} \quad r_{0} \quad$ for rotation on surface of sphere $\vec{r} \perp \vec{p}$

$$
\begin{aligned}
\therefore v_{1} & =r_{1} \omega, \quad|p|=m|v|=m r|\omega| \\
|\vec{r} \times \vec{p}| & =|L|=m_{1} r_{1}^{2} \omega+m_{2} r_{2}^{2} \omega \equiv I \omega \\
I & =\sum_{i} m_{i} r_{i}^{2} \quad \begin{array}{l}
\text { moment of inertia (for a diatomic or any } \\
\text { linear molecule) }
\end{array}
\end{aligned}
$$

Use $m_{1} r_{1}=m_{2} r_{2}$ center of mass constraint to get $I=\mu r_{0}^{2}$
Now write \widehat{T} as analogous to $\frac{p^{2}}{2 \mu} \quad \begin{gathered}p \rightarrow L \\ \mu \rightarrow I\end{gathered}$

$$
\widehat{T}=\frac{\widehat{L}^{2}}{2 I}
$$

Now we have a mass point μ (at r_{0} from origin), where bond axis points at the mass point, μ

looks bad!
$\widehat{H} \psi=\widehat{T} \psi=E \psi$
solutions are $\psi\left(r_{0}, \theta, \phi\right) \equiv Y(\theta, \phi)$
Solve for θ, ϕ dependence of $Y(\theta, \phi)$

We really do not want to do this in detail because we have little reason to actually look at the $Y(\theta, \phi)$ eigenfunctions. THIS SHOULD BOTHER YOU!

Outline of Steps

separation of variables

$$
Y(\theta, \phi)=\Theta(\theta) \Phi(\phi) \quad \text { seen this before }
$$

standard process - arrange θ stuff on LHS, ϕ stuff on RHS. Then divide both sides by $\Theta(\theta) \Phi(\phi)$.

A lot of algebra

$$
\begin{gathered}
\underbrace{\frac{\sin \theta}{\Theta(\theta)}\left(\frac{\partial}{\partial \theta}\right)\left(\sin \theta\left(\frac{\partial}{\partial \theta}\right)\right) \Theta(\theta)+\beta \sin ^{2} \theta}_{\text {only } \theta}=\underbrace{-\frac{1}{\Phi(\phi)}\left(\frac{\partial^{2}}{\partial \phi^{2}}\right) \Phi(\phi)}_{\text {only } \phi} \\
\beta \equiv \frac{2 I E}{\hbar^{2}} \text { collecting constants } \\
\text { both sides must equal same constant: call it } m^{2}
\end{gathered}
$$

2 separate equations:

1. $\phi: \frac{1}{\Phi(\phi)}\left(\frac{\partial^{2}}{\partial \phi^{2}}\right) \Phi(\phi)=-m^{2}$ separation constant \quad Easy to solve
2. $\quad \theta: \frac{\sin \theta}{\Theta(\theta)}\left(\frac{\partial}{\partial \theta}\right)\left(\sin \theta\left(\frac{\partial}{\partial \theta}\right)\right) \Theta(\theta)+\beta \sin ^{2} \theta=m^{2} \quad$ Leads to Legendre Equation

Most of the useful insight comes from \# 1!

$$
\begin{aligned}
\left(\frac{\partial^{2} \Phi}{\partial \phi^{2}}\right) & =-m^{2} \Phi(\phi) \\
\Phi(\phi) & =A_{m} e^{i m \phi} \quad m=0, \pm 1, \pm 2, \quad A_{m} \text { is normalization constant } \\
\Phi(\phi) & =\Phi(\phi+2 m \pi) \quad \text { periodic boundary condition } \\
A_{m} & =(2 \pi)^{-1 / 2} \quad \leftarrow \text { HOW DO WE GET THIS? }
\end{aligned}
$$

Notice that $e^{i m \phi}$ is complex
Can convert to real functions by $2^{-1 / 2}\left[e^{i m \phi} \pm e^{-i m \phi}\right]$. Are these eigenstates?
Turns out we exchange the all-real functions of the geometric picture for a picture of the eigenstates of \widehat{L}_{z}.

$$
\text { \# nodes in } X Y \text { plane }
$$

$$
\left.\begin{array}{rlrl}
\cos \phi=0 @ \frac{\pi}{2} & =m \phi & \phi & =\frac{\pi}{2 m} \\
@ \frac{3 \pi}{2} & =m \phi & \phi & =3\left(\frac{\pi}{2 m}\right)
\end{array}\right\} \text { same nodal plane if } m=1
$$

m is \# of nodal planes thru $X Y$ plane.

2nd differential equation for $\Theta(\theta)$ is more complicated. Legendre Equation: can look at notes. Note that the Θ DE depends on the value of m.

* 2nd boundary condition - the requirement of continuity in θ gives energy quantization.

Notice that the form of $\Theta(\theta)$ eigenstates depends on both L, M.
Final result for energy levels of rotor is

$$
E_{L}=\frac{\hbar^{2}}{2 I} L(L+1) \quad L=0,1,2, \ldots
$$

Notation: L general orbital angular momentum
ℓ angular momentum of one electron J angular momentum of molecular rotation
several places where rigid rotor appears

Same equations, L, ℓ, J often used interchangeably. Also other angular momenta S, I, and N. The beauty is that once we understand one angular momentum we understand all angular momenta.

Pictures

$$
\begin{aligned}
\psi_{L M}(\theta, \phi) & =Y_{L}^{M}(\theta, \phi) \quad \text { "spherical harmonic" } \\
& =\underbrace{\left[\left(\frac{2 L+1}{4 \pi}\right) \frac{(L-|M|)!}{(L+|M|)!}\right]^{1 / 2}}_{\text {normalization constant }} \underbrace{}_{\begin{array}{c}
\text { Legendre Polynomial } \\
\text { (solution of Legendre Equation) }
\end{array} \sum_{L}^{|M|}(\cos \theta)} e^{i M \phi}
\end{aligned}
$$

But we want memorable pictures and intuition-guiding cartoons! See McQuarrie, page 286 for table of $Y_{L}^{m}(\theta, \phi)$ [at end of these notes].

Vector Model

- relates "body frame" (x, y, z) properties to "lab frame" (X, Y, Z) observations.

1. $\vec{J}=\vec{r} \times \vec{p} \quad \vec{J}$ is a vector \perp to plane of rotation.

2. θ, ϕ are the lab frame coordinates of a fictitious particle of mass μ moving on the surface of a sphere of radius r_{0}. They are also the coordinates of one end of the rotor axis where the rotation is about the center of mass along this axis.
3. Key questions:
a. Where does \vec{J} point in lab?
b. How long is \vec{J} ?
c. Where does internuclear axis, r, point in lab? $(J \perp r)$

\vec{J} precesses about laboratory Z at constant α.

$$
\begin{aligned}
& \mathbf{J}_{Z} Y_{J}^{M}=\underbrace{\hbar M}_{\text {length of projection of } \vec{J} \text { on } Z} Y_{J}^{M}
\end{aligned}
$$

* Length of \vec{J}

$$
\begin{aligned}
|\mathbf{J}| & =[\mathbf{J} \cdot \mathbf{J}]^{1 / 2}=\left\langle\overrightarrow{\mathbf{J}}^{2}\right\rangle^{1 / 2} \\
\mathbf{J}^{2} Y_{J}^{M} & =\hbar^{2} J(J+1) Y_{J}^{M} \\
|\mathbf{J}| & =\hbar[J(J+1)]^{1 / 2} \approx \hbar(J+1 / 2)
\end{aligned}
$$

* What is $\langle\cos \alpha\rangle$?

$$
\langle\cos \alpha\rangle=\frac{\hbar M}{\hbar[J(J+1)]^{1 / 2}} \approx \frac{M}{J} \quad \text { CRUCIAL INSIGHT }
$$

Where is the internuclear axis in lab for a specified tilt of \vec{J} from laboratory Z axis?
If $J=M, \vec{J}$ is almost exactly along lab Z. (Why "almost"?)

molecular internuclear axis is rotating in $X Y$ plane

If $M=0, \vec{J}$ is precessing exactly in the $X Y$ plane:
for $M=0\left\{\begin{array}{l}\text { when } \vec{J} \text { is along } X, \text { molecular axis is in } Y Z \text { plane } \\ \text { when } \vec{J} \text { is along } Y, \text { molecular axis is in } X Z \text { plane } \\ \text { so molecular axis is maximally (but not exclusively) along } Z .\end{array}\right.$

Molecular Beam in Z direction

Polar Plots

Shown without explanation in most introductory texts (for atomic orbitals)
distance of plotted point-
from origin

$$
\begin{gathered}
\dot{r}(\theta, \phi)=\frac{1}{2}\left[Y_{J}^{M}(\theta, \phi)+Y_{J}^{-M}(\theta, \phi)\right] \\
\text { real function of } \theta, \phi
\end{gathered}
$$

These are not the solutions of the (r, θ, ϕ) full 3D Schrödinger Equation. They are a way of representing a 3 D object in 2 D .

spherical

3 dumbbells with axis along X, Y, and Z

Notice that \# of nodal surfaces is L (or J).

L	\# surfaces
$0(\mathrm{~s})$	0
$1(\mathrm{p})$	1
$2(\mathrm{~d})$	2

Number of nodal lines in $X Y$ plane is $|M|$.
Now you should be able to

- recognize J, M_{J} (or L, M_{L}) from the number and placement of nodes
- know how \vec{J} is located in a laboratory frame
- know how internuclear axis is located in a laboratory frame.

MIT OpenCourseWare
https://ocw.mit.edu/

5.61 Physical Chemistry

Fall 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

