Lecture \#20: Hydrogen Atom I

Read McQuarrie, Chapter 7
Last time:

Rigid Rotor: Universal θ, ϕ dependence for all central force problems.
$V(\theta, \phi) \quad=0$ for rigid rotor $\quad(\vec{J})$
$\hat{J}^{2} \psi_{J M}=\hbar^{2} J(J+1) \psi_{J M}$
$\hat{J}_{z} \psi_{J M}=\hbar M \psi_{J M}$
$\hat{J}_{ \pm} \psi_{J M}=\hbar[J(J+1)-M(M \pm 1)]^{1 / 2} \psi_{J M \pm 1}$
$\left[J_{i}, J_{j}\right]=i \hbar \sum_{k} \varepsilon_{i j k} J_{k}$
\# of Nodes for real part of $\psi_{J M}$ in x, y plane $\leftrightarrow \mathrm{M}$
\# of Nodal surfaces $\leftrightarrow \mathbf{J}$

Today: Hydrogen Atom
An exactly soluble quantum mechanical problem. Every property is related to every other property via the quantum numbers: n, ℓ, m_{ℓ}. This is what we mean by "structure." It is like saying that a building is more than the bricks it is made up of.

Gives us "cartoons" for understanding more complex systems.

1. H -atom Schrödinger Equation separation of variables yields $\psi(r, \theta, \phi)=R_{n \ell}(r) Y_{\ell}^{m}(\theta, \phi)$ expressed as a product
2. Pictures of orbitals
separate pictures for $R_{n \ell}(r)$ and $Y_{\ell}^{m}(\theta, \phi)$
\# nodes, node spacing, $(\lambda=\mathrm{h} / \mathrm{p})$, envelope for $R_{n \ell}(r)$ (semi-classical)
3. Expectation values of r^{k} - interpretive picture via $n_{\text {effective }}$: scaling, inter-relationships
4. Evidence for "electron spin"
5. spin-orbit term in $\widehat{\mathbf{H}}$.

Lecture \#21 will cover
H atom spectra (rigorous selection rule: $\Delta \ell= \pm 1$). Model for Rydberg states of everything Scaling laws
Rydberg series: "ontogeny recapitulates phylogeny" (Robert Mulliken)
Quantum Defects $=$ Scattering

1. $\quad \mathrm{H}$-atom Schrödinger equation

(\bar{T} contains same terms as a rigid rotor $-\frac{\hbar^{2}}{2 \mu_{H}} \widehat{\nabla}^{2} \quad \begin{aligned} & \text { terms as a rigid roto } \\ & \text { plus r-dependence) }\end{aligned}$
spherical polar coordinates spherical polar coordinates

$$
\mu_{H}=\frac{\left(m_{e^{-}}\right)\left(m_{p^{+}}\right)}{m_{H}} \quad m_{H}=m_{e^{-}}+m_{p^{+}}
$$

ϕ starts $(\phi=0)$ at $+x$ and increases in direction toward y. Range of ϕ is $0 \leq \phi \leq 2 \pi$
θ starts $(\theta=0)$ at $+z$ and increases in direction toward $x y$ plane, $0 \leq \theta \leq \pi$
volume element for spherical polar coordinates:
$\mathrm{d} x \mathrm{~d} y \mathrm{~d} z=\mathrm{r}^{2} \sin \theta \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} \phi$
Laplacian:

$$
\hat{\nabla}^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} .
$$

Looks complicated, but there are two parts to \hat{T}, radial and angular (and we have solved the universal angular part already).

So we can simplify the Schrödinger Equation (multiplied by $2 \mu_{\mathrm{H}} r^{2}$) to

$$
\{-\hbar^{2} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\underbrace{\hat{\mathbf{L}}^{2}+2 \mu_{H} r^{2}[V(r)-E]}_{\text {all } \theta . \phi \text { dependence }}
$$

It is easy to show $\left[\hat{\mathbf{L}}^{2}, f(r)\right]=0$ for any $f(r)$ because $\hat{\mathbf{L}}^{2}$ and $f(r)$ involve different coordinates.

Thus, we expect three quantum numbers for $\psi: \psi_{\ell, m_{\ell}, n}$ a radial quantum number

Expect to be able to factor $\psi_{n e m_{\ell}}=R_{n \ell}(r) Y_{\ell}^{m}(\theta, \phi)$. Basis for separation of variables.

$$
\left[-\mathrm{h}^{2} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+2 \mu_{H} r^{2}[V(r)-E]\right] R(r) Y_{\ell}^{m}(\theta, \phi)=-\hat{\mathbf{L}}^{2} R(r) Y_{\ell}^{m}(\theta, \phi)
$$

Multiply on left by $\frac{1}{\psi}$, cancel unoperated-on factors, and integrate over θ, ϕ. Rearrange to put r-dependence on LHS and θ, ϕ-dependence on RHS.

$$
\begin{array}{r}
\frac{1}{R(r)}\left[-\hbar^{2} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+2 \mu_{H} r^{2}[V(r)-E]\right] R(r) \\
=-\frac{1}{Y_{\ell}^{m}(\theta, \phi)} \widehat{\mathbf{L}}^{2} \underbrace{Y_{\ell}^{m}(\theta, \phi)}_{\substack{\text { eigenfunction } \\
\text { of } \hat{L}^{2}}}=-\underbrace{}_{\substack{\hbar^{2} \ell(\ell+1) \\
\hbar^{2} \ell(\ell+1) \\
\text { constant }}}
\end{array}
$$

Usual separation argument here. LHS only r, RHS only θ, ϕ. Get a radial Schrödinger equation and an already solved angular Schrödinger equation.

Radial Schrödinger Equation

$$
\frac{1}{R(r)}\left[-\hbar^{2} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+2 \mu_{H} r^{2}[V(r)-E]\right] R(r)=-\hbar^{2} \ell(\ell+1)
$$

rearrange, divide by $2 \mu_{\mathrm{H}} \mathrm{r}^{2}$ and multiply by $R(r)$ on left:

$\left(\hbar^{2} \quad \partial\left(r^{2} \partial\right)+V(r)-E\right) R(r)=0 \quad$ The solutions to this equation will depend on n and $\ell: R_{\mathrm{n} \ell}(r)$.

Can simplify even more using $\chi_{\ell}(r)$ rather than $R_{\ell}(r)$:

$$
\begin{aligned}
& \frac{1}{r} \chi_{\ell}(r) \equiv R_{\ell}(r) . \quad \text { After some algebra: } \\
& {\left[-\frac{\hbar^{2} \partial^{2}}{2 \mu_{H} \partial r^{2}}+V_{\ell}(r)-E\right] \chi_{\ell}(r)=0}
\end{aligned}
$$

Looks like ordinary 1-D r, p_{r} Schrödinger Equation!
[But we will mostly not use this super-simplified form of the radial equation in 5.61.] It looks very similar to our other 1-D well Schrödinger Equations, but $\mathrm{V}_{\ell}(r)$ is neither free-particle nor Harmonic Oscillator, and the $r=0$ boundary condition is subtle.

We know that there can easily be found a complete (infinite) set of $\mathrm{R}_{n \ell}(r)$ eigenfunctions.
Note that, although the radial wavefunction does not depend on θ, ϕ, the form of $\mathrm{R}_{n \ell}(r)$ does depend on the value of the ℓ quantum number. Recall the Associated Legendre Polynomials. The $\Theta(\theta)$ part of $Y_{\ell}^{m}(\theta, \phi)$ depends on the value of m.

2. Pictures of orbitals

$\psi(r, \theta, \phi)$ specifies a complex \# at each point in 3-D space. Difficult to plot on a 2-D page.

Usually plot $\underset{\substack{\text { specific } \\ \text { system }}}{R_{n \ell}(r)}$ separately from $\underbrace{Y_{\ell}^{m}(\theta, \phi)}_{\text {universal }}$.

Simple to plot $\mathrm{R}_{n \ell}(r)$ vs. r. A lot of insight is encoded in the $R_{n \ell}(r)$ plot.

We have already looked at $Y_{\ell}^{m}(\theta, \phi)$ polar plots.
[Clever ways, dot-density and contours, to plot dependence of ψ or $\psi^{*} \psi$ on all 3 variables (see McQuarrie text).]

Dependence of energy levels on reduced mass:
$E_{n \ell m_{1}}=\frac{-\Re h c}{n^{2}} \Re$ is the "Rydberg constant", consisting entirely of fundamental constants.
$\mathfrak{R}_{\mathrm{H}}=109737.319 \mathrm{~cm}^{-1}\left(\frac{\mu_{H}}{\mu_{\infty}}\right)=109679 \mathrm{~cm}^{-1}$ for H

$$
\frac{m_{e^{-}} m_{\infty}}{m_{e^{-}}+m_{\infty}}=m_{e^{-}} \quad \begin{aligned}
& \text { Ask: what is minimum possible value of } \mu \text { ? positronium (an } \\
& \text { electron and a positron): } \mu=m_{e^{-}} / 2 . \\
& \\
& \\
& \text { Maximum value is } \mu_{\infty}=m_{e^{-}} \text {for nucleus with infinite mass. }
\end{aligned}
$$

Agree perfectly with Bohr atom energy levels but the wavefunctions are certainly not circular orbits (as predicted by the Bohr model)! Also, Bohr ruled out $\ell=0$.

Form of $\mathrm{R}_{n \ell}(r)$
\# radial nodes is $\mathrm{n}-1-\ell$ (no radial nodes for $1 \mathrm{~s}, 2 \mathrm{p}, 3 \mathrm{~d}$, etc.) (\# angular nodes for ψ is ℓ, total \# nodes is $\mathrm{n}-1$, but E does not increase in order of total \# of nodes). This is not surprising because the θ, ϕ part is independent of the r part.

Now comes some amazing stuff!
1-D semi-classical interpretation of node-spacing in $\mathrm{R}_{\mathrm{n} \ell}(r)$ from $\lambda_{\mathrm{r}}(r)=\mathrm{h} / \mathrm{p}_{\mathrm{r}}(r)$
$\left[-\frac{\hbar^{2}}{2 \mu_{H}} \frac{\partial^{2}}{\partial r^{2}}+V_{\ell}(r)-E_{n \ell}\right] \chi_{n \ell}(r)=0$ equation.
$p_{r, \text { classical }}(r)=\left[2 \mu_{H}\left(E_{n \ell}-V_{\ell}(r)\right)\right]^{1 / 2}$. You know $V_{\ell}(r)!$ Therefore, you know $p_{r, \text { classical }}(r)$.
Now you need to know what to do with this knowledge.
At small r, innermost node spacing is approximately independent of n. This is an important but unexpected simplification.

Non-Lecture: Defer to Lecture \#21

3. Expectation values of integer powers of r. a_{0} is Bohr radius: $\mathrm{a}_{0}=0.0529 \mathrm{~nm}$

We use these simple formulas to get (or guess) the n, ℓ-scaling of all r-dependent electronic quantities, even for non-Hydrogenic systems.

$$
\frac{I_{n}}{h c} \text { is energy (in } \mathrm{cm}^{-1} \text {) required to ionize from the } \mathrm{n}^{\text {th }} \text { energy level }
$$

Note that Ionization Energy $=I_{n}=E_{n=\infty}-E_{n}>0$.

$$
I_{n}=0+\frac{Z^{2} \Re h c}{n^{2}}
$$

solve for n.

$$
\begin{array}{ll}
\text { LUNNUNUNLNLL} & E_{\infty}=0 \\
E_{3}=-\frac{1}{9} \Re h c \\
& E_{2}=-\frac{1}{4} \Re h c
\end{array}
$$

$$
\ldots \quad E_{1}=-\Re h c
$$

For H, n is integer. For everything else, n is not integer but changes as energy increases in steps of 1 .

$$
\begin{aligned}
& n_{\text {effective }}=\left[\frac{\Re h c}{I_{n}}\right]^{1 / 2} \\
& \langle r\rangle_{n \ell}=\frac{a_{0} n^{2}}{Z}\left\{\frac{3}{2}-\frac{\ell(\ell+1)}{2 n^{2}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \langle r\rangle_{1 s}=\frac{a_{0}}{Z} \frac{3}{2} \quad{ }_{\text {replacing }} n_{\text {effective }}^{2} \\
& r_{\text {effective }}=\frac{a_{0}}{Z} \frac{\mathfrak{R} h c}{I_{n}}\left\{\frac{3}{2}-\frac{\ell(\ell+1) I_{n}}{2 \mathfrak{R} h c}\right\}
\end{aligned}
$$

$$
\begin{gathered}
n_{\text {effective }}=\left[\frac{\Re h c}{I_{n}}\right]^{1 / 2} \text { Obtained by plugging } n_{\text {effective }} \text { into }\langle r\rangle_{\mathrm{n} \ell} . \\
\langle r\rangle_{n \ell}=\frac{a_{0} n^{2}}{Z}\left\{\frac{3}{2}-\frac{\ell(\ell+1)}{2 n^{2}}\right\} \\
r_{n \ell}^{\text {effective }}=\frac{a_{0}}{Z} \frac{\Re h c}{\frac{I_{n}}{n_{\text {effective }}}\left\{\frac{3}{2}-\frac{\ell(\ell+1)}{2} \frac{I_{n}}{\Re h c}\right\}}
\end{gathered}
$$

Use $I_{\mathrm{n} \ell}$ to estimate $r_{n \ell}^{\text {effective }}$ via $n_{\text {effective }}$. The value of $n_{\text {effective }}$ is the link among all electronic properties of an atom. This is what we mean by "structure".

All properties of highly excited electronic states of atoms and molecules are inter-related or estimated in this way. Intuition is better than memorization (this will be covered more in Lecture \#21)!
End of Non-Lecture
4.

Need to invoke a new kind of angular momentum: e^{-}spin
Zeeman effect: energy levels are split in a magnetic field due to the magnetic dipole moment associated with circulating charge.

$$
\overrightarrow{\mathrm{m}}=\frac{-|e|}{2 m_{e}} \overrightarrow{\hat{\mathbf{L}}}
$$

(We understand \mathbf{L} in terms of $\vec{r} \times \vec{p}$ and \vec{m} in terms of current in a circular orbit)

This gives a new potential energy term

$$
\begin{aligned}
V_{\text {mag }} & =-\overrightarrow{\mathrm{m}} \cdot \overrightarrow{\mathrm{~B}} \\
& =\frac{|e| B_{z}}{2 m_{e}} \frac{\hat{\mathbf{L}}_{z}}{\frac{m_{m}}{e}}
\end{aligned}
$$

Evaluate the effect the magnetic field has on $E_{n f \mathrm{~m}_{\ell}}$ using perturbation theory. Since $\hat{\mathbf{L}}_{z}$ has only $\Delta m_{\ell}=0$ matrix elements, we can say that

$$
E^{\text {Zeeman }}=E_{m_{\ell}}^{(1)} .
$$

Expect, for B-field along z, z-polarized VUV radiation excites $\Delta m_{\ell}=0$ transitions and x, y polarized radiation excites $\Delta m_{\ell}= \pm 1$ transitions.

In non-zero B-field, expect to see the single zero-field $2 \mathrm{p} \leftarrow 1$ s transition split into 1,2 , or 3 lines depending on light polarization with respect to direction of magnetic field. How many for z-polarized light? How many for x or y polarized light? How many for light linearly polarized somewhere between x and z ? What is the $\Delta \mathrm{M}_{\mathrm{L}}$ selection rule? Where does it come from?

Actually see many more components. Why? For $\ell=1, \mathrm{~s}=1 / 2$ and $\mathrm{g}_{/}=1, \mathrm{~g}_{\mathrm{s}}=2$, expect 5 levels: $(-1,-1 / 2),(0,-1 / 2),[(-1,+1 / 2),(+1,-1 / 2)],(0,1 / 2)$, and $(1,1 / 2)$. The bracket includes two m_{ℓ}, m_{s} components that are unexpectedly degenerate.

Stern-Gerlach Experiment

atomic beam through magnetic field, the strength of which varies linearly in a direction \perp to the direction of the atomic beam.
Different deflection of different m-components. Beamlets!
See unexpectedly too many beamlets.
5. Finally, we can understand the very small zero-field splitting in 2 p $\leftarrow 1$ s transition as arising from "spin-orbit" term in $\widehat{\mathbf{H}}$.

$$
\widehat{\mathbf{H}}^{\mathrm{sO}} \propto \ell \cdot s
$$

$[\vec{\ell}, \vec{s}]=0$ because $\boldsymbol{\ell}$ and \boldsymbol{s} operate on different coordinates

$$
\begin{gathered}
j \equiv \ell+s \\
j^{2}=\ell^{2}+s^{2}+2 \ell \cdot s
\end{gathered}
$$

$\ell \cdot s=\frac{1}{2}\left[j^{2}-\ell^{2}-s^{2}\right]=\ell_{z} s_{z}+\frac{1}{2} \underbrace{\left(\ell_{+} s_{-}+\ell_{-} s_{+}\right)}_{\text {spois } m_{\ell}, m_{s}}$
You show that $\left[\ell \cdot s, j^{2}\right]=\left[\ell \cdot s, \ell^{2}\right]=\left[\ell \cdot s, s^{2}\right]=\left[\ell \cdot s, j_{z}\right]=0$

$\widehat{\mathbf{H}}^{s o}(j \ell s m$, good $)$ vs. $\widehat{\mathbf{H}}^{\text {Zeeman }}\left(\ell m_{\ell} s m_{s}\right.$ good $) . \mathbf{H}_{\text {so }}$ and $\mathbf{H}_{\text {zeeman }}$ fight each other.
6. Stern-Gerlach Experiment

Magnetic field in z-direction
Pole pieces with slanted ends in y direction
$B_{z}=\left(B_{z}^{0}-\alpha y\right) \hat{z}$
$V(y, z)=-\mu \cdot B=-\mu_{z}\left(B_{z}^{0}-\alpha y\right)$
Force $(y)=-\frac{d V}{d y}=-\mu_{z} \alpha=+\frac{|e|}{2 m_{e}} \hat{L}_{z} \alpha$

$$
\hat{\mu}=-\frac{|e|}{2 m_{e}} \hat{L}
$$

Atoms follow equi-potential
$m>0$ high field seeking
$m<0$ low field seeking

2 Kinds of Experiment

A. Single Stern-Gerlach beam for H in 1s?
Expected no deflection or splitting of beam because $\ell=0$

Observed two beam-lets, $m_{s}=+1 / 2$ and $m_{s}=-1 / 2$!
B. Double Stern-Gerlach

Split beam into $m_{s}=1 / 2$ and $m_{s}=-1 / 2$ beam-lets
Now put one beam-let through an identical S-G setup, but where the z-axis of the magnets is tilted relative to the original z-axis.

Get two beam-lets, even though input beam to the second S-G apparatus had been pre-selected to be in a single m_{s} state! What postulate explains this?

MIT OpenCourseWare
https://ocw.mit.edu/

5.61 Physical Chemistry

Fall 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

