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Lecture 24: Molecular Orbital
Theory, Matrix Mechanics and

Variational Principle

At this point, we have nearly completed our introduction to quantum mechanics and

we’re finally ready to deal with the electronic structure of molecules. To begin with, we are

going to treat what is absolutely the simplest molecule we can imagine: H+
2 . This simple

molecule will allow us to work out the basic ideas of what will become molecular orbital

(MO) theory.
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2 Coordinates

We set up our coordinate

system as shown at right, with

the electron positioned at r,

and the two nuclei positioned

at points RA and RB, at a dis-

tance R from one another. The

Hamiltonian is easy to express:

Ĥ = −1

2
∇2
r︸ ︷︷ ︸

Electron
Kinetic
Energy

− ∇
2
A

2MA︸ ︷︷ ︸
HA

Kinetic
Energy

− ∇
2
B

2MB︸ ︷︷ ︸
HB

Kinetic
Energy

− 1

|R̂A − r̂|︸ ︷︷ ︸
e−−HA

Attraction

− 1

|R̂B − r̂|︸ ︷︷ ︸
e−−HB

Attraction

+
1

|R̂A − R̂B|︸ ︷︷ ︸
HA−HB
Repulsion

Now, just as was the case for atoms, we would like a picture where we can separate

the electronic motion from the nuclear motion. For helium, we did this by noting that the

nucleus was much heavier than the electrons and so we could approximate the center of mass

coordinates of the system by placing the nucleus at the origin. For molecules, we will make

a similar approximation, called the Born-Oppenheimer approximation. Here, we note

again that the nuclei are much heavier than the electrons. As a result, they will move much

more slowly than the light electrons. Thus, from the point of view of the electrons,
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the nuclei are almost sitting still and so the moving electrons see a static field that

arises from fixed nuclei. A useful analogy here is that of gnats flying around on the back of

an elephant. The elephant may be moving, but from the gnats point of view, the elephant

is always more or less sitting still. The electrons are like the gnats and the nucleus is like

the elephant. The result is that, if we are interested in the electrons, we can to a good

approximation fix the nuclear positions, RA and RB, and just look at the motion of the

electrons in a molecule. This is the Born-Oppenheimer approximation, which is sometimes

also called the clamped-nucleus approximation, for obvious reasons. Once the nuclei are

clamped, we can make two simplifications of our Hamiltonian. First, we can neglect the

kinetic energies of the nuclei because they are not moving. Second, because the nuclei are

fixed, we can replace the operators R̂A and R̂B with the numbers RA and RB. Thus, our

Hamiltonian reduces to

Ĥel(RA,RB) = −∇
2
r

2
− 1

|RA − r̂|
− 1

|RB − r̂|
+

1

|RA −RB|

where the last term is now just a number — the electrostatic repulsion between two protons

at a fixed separation. The second and third terms depend only on the position of the electron,

r, and not its momentum, so we immediately identify those as a potential and write:

Ĥel(RA,RB) = −∇
2
r

2
+ V RA,RB

eff (r̂) +
1

|RA −RB|
.

This Hamiltonian now only contains operators for the electron (hence the subscript “el”),

and we write the Schrödinger equation for the electron as:

Ĥel(R)ψel(r) = Eelψel(r)

where ψel is the wave function for the single electron in H+
2 . [Note: here we use the shorthand

R to denote both RA and RB.] However, this Schrödinger equation does not tell the whole

story. Because the Hamiltonian depends on the nuclear positions, the electronic wavefunction

will also depend on nuclear locations. For example, the figure below shows the difference

between the effective potentials that the electron “feels” when the nuclei are close together

versus far apart:
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Because the electron feels a different potential at each bond distance R, the wavefunction

will also depend on R. In the same limits as above, we will have:
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Finally, because the electron eigenfunction, ψel, depends on R, then the eigen-energy of

the electron, Eel(R), will also depend on the bond length. Thus a more precise form of the

electronic Schrödinger equation would be:

Ĥel(R)ψel(r;R) = Eel(R)ψel(r;R)

where the additional dependence of everything on the value of R is made explicit. Me-

chanically, then, what we have to do is solve for the electronic eigenstates, ψel, and their

associated eigenvalues, Eel(R), at many different fixed values of R. The way that these

eigenvalues change with R will tell us about how the energy of the molecule changes as we

stretch or shrink the bond. This is the central idea of the Born-Oppenheimer approxima-

tion, and it is really very fundamental to how chemists think about molecules. We think

about classical point-like nuclei clamped at various different positions, with the quantum

mechanical electrons whizzing about and gluing the nuclei together. When the nuclei move,

the energy of the system changes because the energies of the electronic orbitals change as

well. There are certain situations where this approximation breaks down, but for the most

part the Born-Oppenheimer picture provides an extremely useful and accurate way to think

about chemistry.

How are we going to solve for these eigenstates? It should be clear that looking for exact

solutions is going to lead to problems in general. Even for H+
2 the solutions are extremely

complicated and for anything more complex than H+
2 exact solutions are impossible. So we

have to resort to approximations again. The first thing we note is that if we look closely at our

intuitive picture of the H+
2 eigenstates above, we recognize that these molecular eigenstates

look very much like the sum of the 1s atomic orbitals for the two hydrogen atoms. That is,

we note that, to a good approximation, we should be able to write:

ψel(r) ≈ c11sA(r) + c21sB(r)

where c1 and c2 are constants. In the common jargon, the function on the left is called a
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molecular orbital (MO), whereas the functions on the right are called atomic orbitals

(AOs). If we write our MOs as sums of AOs, we are using what is called the Linear Combi-

nation of Atomic Orbitals (LCAO) approach. The challenge, in general, is to determine the

“best” choices for c1 and c2. For H+
2 , it seems reasonable that the best choice for the ground

state will be c1 = c2. But how can we be sure this is really the best we can do? And what

about the possibility that we want something other than the ground state? Or if we want

to describe a more complicated molecule like HeH+2?

The Variational Principle

In order to make further progress, we will use the Variational Principle to predict a

better estimate of the ground state energy. This method is very general and its use in

physical chemistry is widespread. Assume you have a Hamiltonian (such as for H+
2 ) but you

do not know the ground state energy, E0, and/or ground state eigenfunction, φ0.

Ĥφ0 = E0φ0 =⇒
〈
Ĥ
〉

=

∫
φ∗0Ĥφ0dτ =

∫
φ∗0E0φ0dτ = E0.

Now, let’s make a guess, ψ, at the ground state wavefunction, which we will call the trial

wavefunction. Compute the average value of the energy for the trial wavefunction:

Eavg =

∫
ψ∗Ĥψdτ∫
ψ∗ψdτ

=

∫
ψ∗Ĥψdτ (if ψ is normalized).

The Variational Theorem tells us that Eavg ≥ E0 for any choice of the trial function ψ! This

makes physical sense, because the ground state energy is, by definition, the lowest possible

energy, so it would be nonsense for the average energy to be lower than the energy of the

trial wavefunction.

SIDEBAR: PROOF OF VARIATIONAL THEOREM

Expand ψ (assumed normalized) as a linear combination of the unknown eigenstates, φn, of

the Hamiltonian:

ψ =
∑
n

anφn.
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Note that in practice you will not know these eigenstates. The important point is that no

matter what function you choose you can always expand it in terms of the infinite set of

orthonormal eigenstates of Ĥ.∫
ψ∗ψdτ =

∑
n,m

a∗nam

∫
φ∗nφmdτ =

∑
n,m

a∗namδmn =
∑
n

|an|2 = 1

Eavg =

∫
ψ∗Ĥψdτ =

∑
a∗namEnδnm

Eavg =
∑
n

En|an|2

E0 = “1” · E0 =
∑
n

|an|2E0 using the definition of “1” above

==⇒ Eavg − E0 =
∑
n

|an|2En −
∑
n

|an|2E0 =
∑
n

|an|2(En − E0) ≥ 0 since En > E0

Notice that in the last line we have shown that Eavg ≥ E0. It is important to note that

the equal sign is only obtained if an = 0 for all eigenstates φn that have En > E0. In this

situation, ψ actually is the ground state of the system (or at least one component of the

ground state, if the ground state is degenerate).

The variational method does two things for us. First, it gives us a way to compare two

different wavefunctions and to show which one is closer to the wavefunction of the ground

state: the state that has a lower average energy is the better approximation. Second, if we

define our trial wavefunction in terms of parameters, then variation of those parameters gives

us a way to optimize the parameters. Assume that ψ depends on a set of parameters c —

such as is the case for our LCAO wavefunction above. We’ll put the parameters in brackets

−ψ[c] in order to distinguish them from things like positions that are inside of parentheses

−ψ(r). Then the average energy will depend on these parameters:

Eavg(c) =

∫
ψ[c]∗Ĥψ[c]dτ∫
ψ[c]∗ψ[c]dτ

.

Thus, we can solve for the optimal set of parameters without knowing anything about the

exact eigenstates!

Let us apply this in the particular case of our LCAO-MO treatment of H+
2 . Our trial

wavefunction is:

ψel[c] = c11sA + c21sB
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where c = (c1, c2). We want to determine the best values of c1 and c2 and the variational

theorem tells us we need to minimize the average energy to find the best values. First, we

compute the average energy. The numerator gives:∫
ψ∗elĤelψeldτ =

∫
(c11sA + c21sB)∗Ĥ(c11sA + c21sB)dτ

= c∗1c1

∫
1sAĤel1sAdτ︸ ︷︷ ︸
≡H11

+c∗1c2

∫
1sAĤel1sBdτ︸ ︷︷ ︸
≡H12

+c∗2c1

∫
1sBĤel1sAdτ︸ ︷︷ ︸
≡H21

+ c∗2c2

∫
1sBĤel1sBdτ︸ ︷︷ ︸
≡H22

≡ c∗1H11c1 + c∗1H12c2 + c∗2H21c1 + c∗2H22c2.

Note that H11 and H22 are not the orbital energies of 1s on an H atom. H11 and H22 depend

on R because the H–atom 1s orbital is in the potential defined by both H atoms. The

normalization integral gives (Sij are “overlap integrals”)∫
ψ∗elψeldτ =

∫
(c11sA + c21sB)∗(c11sA + c21sB)dτ

= c∗1c1

∫
1sA1sAdτ︸ ︷︷ ︸
≡S11

+c∗1c2

∫
1sA1sBdτ︸ ︷︷ ︸
≡S12

+c∗2c1

∫
1sB1sAdτ︸ ︷︷ ︸
≡S21

+ c∗2c2

∫
1sB1sBdτ︸ ︷︷ ︸
≡S22

≡ c∗1S11c1 + c∗1S12c2 + c∗2S21c1 + c∗2S22c2.

So that the average energy takes the form:

Eavg(c) =
c∗1H11c1 + c∗1H12c2 + c∗2H21c1 + c∗2H22c2

c∗1S11c1 + c∗1S12c2 + c∗2S21c1 + c∗2S22c2

.

We note that there are some simplifications we could have made to this formula: for exam-

ple, since our 1s functions are normalized S11 = S22 = 1. However, by not making these

simplifications, our final expressions will be a little more general and that will help us use

them in more situations.

Now, we want to minimize this average energy with respect to c1 and c2. Taking the

derivative with respect to c1 and setting it equal to zero [Note: when dealing with complex

numbers and taking derivatives one must treat variables and their complex conjugates as
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independent variables. Thus d/dc1 has no effect on c∗1]:

∂Eavg

∂c1

= 0 =
c∗1H11 + c∗2H21

c∗1S11c1 + c∗1S12c2 + c∗2S21c1 + c∗2S22c2

− c∗1H11c1 + c∗1H12c2 + c∗2H21c1 + c∗2H22c2

(c∗1S11c1 + c∗1S12c2 + c∗2S21c1 + c∗2S22c2)2 (c∗1S11 + c∗2S21)

=⇒ 0 = (c∗1H11 + c∗2H21)− c∗1H11c1 + c∗1H12c2 + c∗2H21c1 + c∗2H22c2

c∗1S11c1 + c∗1S12c2 + c∗2S21c1 + c∗2S22c2

(c∗1S11 + c∗2S21)

=⇒ 0 = (c∗1H11 + c∗2H21)− Eavg (c∗1S11 + c∗2S21) .

Applying the same procedure to c2:

∂Eavg

∂c2

= 0 =
c∗1H12 + c∗2H22

c∗1S11c1 + c∗1S12c2 + c∗2S21c1 + c∗2S22c2

− c∗1H11c1 + c∗1H12c2 + c∗2H21c1 + c∗2H22c2

(c∗1S11c1 + c∗1S12c2 + c∗2S21c1 + c∗2S22c2)2 (c∗1S12 + c∗2S22)

=⇒ 0 = (c∗1H12 + c∗2H22)− c∗1H11c1 + c∗1H12c2 + c∗2H21c1 + c∗2H22c2

c∗1S11c1 + c∗1S12c2 + c∗2S21c1 + c∗2S22c2

(c∗1S12 + c∗2S22)

=⇒ 0 = (c∗1H12 + c∗2H22)− Eavg (c∗1S12 + c∗2S22) .

We notice that the expressions above look strikingly like matrix-vector operations. We can

make this explicit if we define the Hamiltonian matrix:

H ≡
(
H11 H12

H21 H22

)
≡

(∫
1sAĤel1sAdτ

∫
1sAĤel1sBdτ∫

1sBĤel1sAdτ
∫

1sBĤel1sBdτ

)
and the Overlap matrix:

S ≡
(
S11 S12

S21 S22

)
≡
(∫

1sA1sAdτ
∫

1sA1sBdτ∫
1sB1sAdτ

∫
1sB1sBdτ

)
.

Then the best values of c1 and c2 satisfy the matrix eigenvalue equation:(
c∗1 c∗2

)(H11 H12

H21 H22

)
= Eavg

(
c∗1 c∗2

)(S11 S12

S21 S22

)
.

Which means that:
∂Eavg

∂c
= 0⇐⇒ c† ·H = Eavgc

† · S. (Eq. 1)

This equation doesn’t look so familiar yet, so we need to massage it a bit. First, it turns

out that if we had taken the derivatives with respect to c∗1 and c∗2 instead of c1 and c2, we

would have gotten a slightly different equation:(
H11 H12

H21 H22

)(
c1

c2

)
= Eavg

(
S11 S12

S21 S22

)(
c1

c2

)
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or
∂Eavg

∂c∗
= 0⇐⇒ H · c = EavgS · c (Eq. 2)

Taking the derivatives with respect to c∗1 and c∗2 is mathematically equivalent to taking

the derivatives with respect to c1 and c2 [because we can’t change c1 without changing its

complex conjugate, and vice versa]. Thus, the two matrix equations (Eqs. 1 and 2) above

are precisely equivalent, and the second version is a little more familiar. We can make it

even more familiar if we think about the limit where 1sA and 1sB are orthogonal (e.g. when

the atoms are very, very far apart). Then we would have for the Overlap matrix:

S ≡
(∫

1sA1sAdτ
∫

1sA1sBdτ∫
1sB1sAdτ

∫
1sB1sBdτ

)
=

(
1 0
0 1

)
= 1.

Thus, in an orthonormal basis the overlap matrix is just the identity matrix and we can

write Eq. 2 as:
∂Eavg

∂c∗
= 0⇐⇒ H · c = Eavgc.

Now this equation is in a form where we certainly recognize it: this is an eigenvalue equation.

Because of its close relationship with the standard eigenvalue equation, Eq. 2 is usually called

a Generalized Eigenvalue Equation.

In any case, we see the quite powerful result that the Variational theorem allows us

to turn operator algebra into matrix algebra. Looking for the lowest energy LCAO

state is equivalent to looking for the lowest eigenvalue of the Hamiltonian matrix, H. Further,

looking for the best c1 and c2 is equivalent to finding the eigenvector of H that belongs to

the lowest energy eigenvalue of H.

Matrix Mechanics

The variational principle illustrates what is actually a very general and powerful way of

thinking and computing known as matrix mechanics (MM).

Matrix mechanics is actually completely equivalent to the wave mechanics we’ve been

discussing so far, but it has two major benefits. First, it places emphasis on the global

structure of the problem, allowing us to make predictions about the eigenstates of abstract

systems with a modest amount of effort and often without evaluating a single integral(!).
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Second, because MM involves linear algebra rather than symbolic calculus, it is much easier

to program a computer to solve problems in MM than in wave mechanics.

Wave Mechanics Matrix Mechanics

ψ = c1φ1 + ψ = c2φ2 + ψ = c3φ3 + . . . ~ψ =


c1

c2

c3

. . .


ψ∗ = c∗1φ

∗
1 + c∗2φ

∗
2 + c∗3φ

∗
3 + . . . ~ψ† =

(
c∗1 c∗2 c∗3 . . .

)
Ô (operator) O (matrix);Oij =

∫
φ∗i Ôφjdτ

Ô is Hermitian O = O†∫
ψ∗Ôχdτ ~ψ† ·O · ~χ

Sij =
∫
φ?iφjdτ S (overlap)∫

ψ∗χdτ ~ψ† · S · ~χ

Ôψ = εψ O · ~ψ = εS · ~ψ

(φi are basis functions)
�
��	

conjugate
transpose

We’ve already encountered some of these rules above in dealing with the variational

principle; the Hamiltonian became a matrix, the overlap matrix cropped up, wavefunctions

became row and column vectors, the eigenvalues of the operator were represented by the

eigenvalues of the matrix. . . Mathematically, the overlap matrix is an annoyance; it comes

from the fact that we haven’t chosen our basis functions so that they are orthonormal. If

they were orthonormal, the overlap matrix would become the identity matrix (unity along

the diagonal, zeroes off) and we could just ignore it. We illustrated this above for the case

of H+
2 . If the basis functions are orthonormal, we also have a very nice interpretation for the

coefficients, ci. Specifically, |ci|2 is the probability of finding the system in state i. This last

point is very useful in interpreting MM and will come up frequently in the Problem Sets.

Let’s go ahead and apply what we’ve learned to obtain the MO coefficients c1 and c2 for

H+
2 . At this point we make use of several simplifications. The pair of off-diagonal matrix

elements between 1sA and 1sB of H are identical because the Hamiltonian is Hermitian and
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the orbitals are real:∫
1sAĤel1sBdτ =

(∫
1s∗BĤel1sAdτ

)∗
=

∫
1sBĤel1sAdτ ≡ V12.

Note that V12 is positive at small R and goes to zero as R→∞ (see page 13).

Meanwhile, the diagonal elements are also equal, but for a different reason. The diagonal

elements are the average energies of the states 1sA and 1sB. If these energies were different,

it would imply that having the electron on one side of H+
2 was more energetically favorable

than having it on the other, which would be very puzzling. So we conclude∫
1sAĤel1sAdτ =

∫
1sBĤel1sBdτ ≡ ε.

Note that ε depends on R and, as R → ∞, ε → −1
2
. ε depends on R because the electron

in a 1s orbital centered on nucleus A is attracted by nucleus B at a distance R from nucleus

A.

Finally, we remember that 1sA and 1sB are normalized, so that∫
1sA1sAdτ =

∫
1sB1sBdτ = 1

and because the 1s orbitals are real, the off-diagonal elements of S are also the same:

S12 =

∫
1sA1sBdτ =

∫
1sB1sAdτ = S21.

Incorporating all of these simplifications gives us the generalized eigenvalue equation:(
ε V12

V12 ε

)(
c1

c2

)
= Eavg

(
1 S12

S12 1

)(
c1

c2

)
.

All of your favorite mathematical programs (Matlab, Mathematica, Maple, MathCad,. . . )

are capable of solving for the generalized eigenvalues and eigenvectors, and for more com-

plicated cases we suggest you use them. However, this case is simple enough that we can

solve it by guess–and–test. Based on our physical intuition above, we guess that the correct

eigenvector will have c1 = c2. Plugging this in, we find:(
ε V12

V12 ε

)(
c1

c2

)
= Eavg

(
1 S12

S12 1

)(
c1

c2

)
=⇒

(
(ε+ V12)c1

(ε+ V12)c1

)
= Eavg

(
(1 + S12)c1

(1 + S12)c1

)
=⇒= Eavg =

ε+ V12

1 + S12

≡ Eσ.



5.61 Lecture 24 Fall, 2017 Page 11

Thus, our guess is correct and one of the eigenvectors of this matrix has c1 = c2. This

eigenvector is the σ–bonding state of H+
2 , and we can express the associated orbital as:

ψσel = c11sA + c21sB = c11sA + c11sB ∝ 1sA + 1sB

where in the last expression we have noted that c1 is just a normalization constant. In

freshman chemistry, we taught you that the σ–bonding orbital existed, and this is where it

comes from.
We can also get the σ∗–antibonding orbital
from the variational procedure. Since the
matrix is a 2×2 it has two unique eigenval-
ues: the lowest one (which we just found
above) is bonding and the other is anti-
bonding. We can again guess the form of
the antibonding eigenvector, since we know
it has the characteristic shape +/−, so that
we guess the solution is c1 = −c2:
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ψσ(r)

(
ε V12

V12 ε

)(
c1

−c1

)
= Eavg

(
1 S12

S12 1

)(
c1

−c1

)

⇒
(

(ε− V12)c1

−(ε− V12)c1

)
= Eavg

(
(1− S12)c1

−(1− S12)c1

)

⇒ Eavg =
ε− V12

1− S12

= Eσ∗

so, indeed the other eigenvector has c1 = −c2. The corresponding antibonding orbital is

given by:

ψσ
∗

el = c11sA + c21sB = c11sA − c11sB ∝ 1sA − 1sB

where we note again that c1 is just a normalization constant. Given these forms for the

bonding and antibonding orbitals, we can draw a simple picture for the H+
2 MOs (see above).

We can incorporate the energies obtained above into a simple MO diagram that looks

like this:
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Eσ∗ =
ε− V12

1− S12

E1SA
= ε E1SB

= ε

Eσ =
ε+ V12

1 + S12

On the left and right, we draw the energies of the atomic orbitals (1sA and 1sB) that

make up our molecular orbitals (σ and σ∗) in the center. We note that when the atoms

come together the energy of the bonding and antibonding orbitals are shifted by different

amounts:

Eσ∗ − E1s =
ε− V12

1− S12

− ε =
ε− V12

1− S12

− ε(1− S12)

1− S12

=
εS12 − V12

1− S12

E1s − Eσ = ε− ε+ V12

1 + S12

=
ε(1 + S12)

1 + S12

− ε+ V12

1 + S12

=
εS12 − V12

1 + S12

Now, S12 is the overlap between two 1s atomic orbitals. Since these atomic orbital wave-

functions are never negative, S12 must be a positive number. Thus, the first denominator is

greater than the second, from which we conclude

Eσ∗ − E1s =
εS12 − V12

1− S12

>
εS12 − V12

1 + S12

= E1s − Eσ.

Thus, the antibonding orbital is destabilized more than the bonding orbital is stabilized. This

conclusion need not hold for all diatomic molecules, but it is a good rule of thumb. This effect

is called “overlap repulsion”. Note that in the special case where the overlap between the

orbitals is negligible, S12 goes to zero and the two orbitals are shifted by equal amounts.

However, when is S12 nonzero there are two effects that shift the energies: the physical

interaction between the atoms and the fact that the 1sA and 1sB orbitals are not orthogonal.

When we diagonalize H, we account for both of these effects, and the orthogonality constraint

pushes the anti-bonding orbital upward in energy.

Now, the rather miraculous thing about this simple MO treatment of H+
2 is that it actually

predicts the formation of a chemical bond between two atoms! To see this, we remember
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that the energies of the σ and σ∗ orbitals will depend on the distance between

the nuclei. This is a direct result of the Born-Oppenheimer approximation we made at the

start of this section. At some expense of time, the explicit forms of S12(R), ε(R) and V12(R)

can be worked out using the explicit forms for the hydrogen atomic orbitals. For more about

how these integrals are evaluated, you can look at McQ Problems 10.6-10.11. The integrals

themselves are not interesting, but the results are:

S = e−R
(

1 +R +
1

3
R2

)
H12 = e−R

(
1

R
− 1

2
− 7

6
R− 1

6
R2

)
ε = −1

2
+ e−2R

(
1 +

1

R

)
Given that all of the constituent integrals are R-dependent, it should be clear that the MO

energies, Eσ and Eσ∗ , will both depend on R. The resulting energies are plotted below. The

clear conclusion is that, in the σ state, the energy is typically lower when the two atoms

are close together than when they are far apart — the two atoms are bound to one another!

Further, there is a characteristic distance that the atoms like to be relative to one another

— the energy is lowest at about R = 1.3 Ångstrom. At this point, the one-electron bond

is worth about 1.7 eV. Both of these numbers are quite close to physical reality, where the

true bond length is about 1.0 Ångstrom and the binding energy is about 2.8 eV. Thus, from

this model we would conclude that chemical bonds must exist, even if we didn’t know from

experience that they do. Note that, as you might have guessed, the antibonding orbital is

unbound (repulsive) at all separations, R.
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