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MASSACHUSETTS INSTITUTE OF TECHNOLOGY

5.61 Physical Chemistry I
Fall, 2017

Professor Robert W. Field

Lecture 26: Qualitative Molecular
Orbital Theory: Hückel Theory

Models in Physical Chemistry

Our job is to make models that are intentionally as simple as possible. We do this to develop 
intuition. Often the models are obviously too crude to be quantitatively correct. But our 
goal is to find a model that is qualitatively in agreement with a large body of experimental 
and theoretical results. And then we try to find examples that break the model! This is where 
new insights are generated.

LCAO–MO Theory applied to H2 , H2, AH, A2, AB diatomic molecules in 5.61 has been 
entirely qualitative. We attempt to use insights about atomic properties as embodied in 
the Periodic Table to explain molecular properties. A key property is orbital size, based on 
hydrogen atom properties.

In =
hc<
n?2

rn∗ = a0n
?2 = a0

(
hc<
In

)
Atomic Orbital sizes, orbital energies, and non–degenerate perturbation theory generate

enormous insights into the electronic properties of the valence states of diatomic molecules.

From diatomic molecules we have confidence to move to larger molecules, based on the di-

atomic molecule–like properties of “chromophores”. A chromophore is a small group of atoms

in a molecule identified by LCAO-MO Theory as having a dominant role in determining a

particular molecular property.

The next step is to develop a semi-quantitative model that starts with planar conjugated

polyatomic molecules. This model exploits the variational method to generate molecular

energy levels and wavefunctions. But the model, Hückel Theory, is based on shocking sim-

plifications. It proves surprising predictive relationships between diverse molecular properties
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and invites many ways to improve the model without doing accurate quantum mechanical

calculations. This lecture is about Hückel Theory. The next two lectures show how to

approach an accurate numerical Quantum Mechanical representation.

********************************************************************************

At the end of these notes are Non-Lecture sections on Matrix Multiplication and Useful

Tricks for checking a variational calculation.

********************************************************************************

In general, the vast majority of polyatomic molecules can be thought of as consisting of a

collection of two–electron bonds between pairs of atoms. So the qualitative picture of σ and

π–bonding and antibonding orbitals that we developed for a diatomic molecule like CO can

be carried over given a qualitative starting point for describing the C=O bond in acetone,

for example. One place where this qualitative picture is extremely useful is in dealing with

conjugated systems — that is, molecules that contain a series of alternating double/single

bonds in their Lewis structure, such as 1,3,5–hexatriene:
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H-atoms excluded. C-atoms at ends of “bonds”.

Now, you may have been taught in previous courses that, because there are other reso-

nance structures that you can draw for this molecule, such as:
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•

that it is better to think of the molecule as having a series of bonds of order 1 1
2

rather

than 1/2/1/2/1/. . . MO theory actually predicts this behavior, and this prediction

is one of the great successes of MO theory as a descriptor of chemistry. In this

lecture, we show how even a very simple MO approximation provides a useful description of

conjugated systems.

Conjugated molecules tend to be planar because the planar structure is most stable. This

great simplification allows us to place all the atoms in the x–y plane. Thus, the molecule

will have reflection symmetry in the xy plane:
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Now, for diatomic molecules, we have reflection symmetry in the xz and yz planes (z is

defined as the bond axis) and this gives rise to πx and πy orbitals that are odd with respect

to reflection in a plane that contains the bond axis and σ orbitals that are even. In that

same way, for planar conjugated systems the orbitals will separate into σ orbitals that are

even with respect to reflection through to xy plane and πz orbitals that are odd with respect

to reflection through the xy plane. These πz molecular orbitals will be linear combinations

of the πz atomic orbitals on each carbon atom:

z

In trying to understand the chemistry of these compounds, it makes sense to focus our

attention on these πz orbitals and ignore the σ orbitals. The πz orbitals turn out to be the

highest energy occupied orbitals, with the σ orbitals being more strongly bound. Thus, the

forming and breaking of bonds — as implied by our set of resonance structures — will be

more easily understood if we focus on making and breaking π bonds rather than σ bonds.

Thus, at a basic level, we can ignore the existence of the σ–orbitals and deal only with the

π–orbitals in a qualitative MO theory of conjugated systems. This surprising assumption is

the basic approximation of Hückel theory, which can be outlined according to the standard

5 steps of MO theory:
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1) Define a basis of atomic orbitals. Here, since we are only interested in the πz

orbitals, we will be able to express the π MOs as linear combinations of one pz orbital

on each carbon atom. If we assume that there are N carbon atoms, each contributes a

pz orbital, and we can write the µth MOs as:

πµ =
N∑
i=1

cµi p
i
z.

2) Compute the relevant matrix representations. Hückel theory makes some shock-

ing approximations at this step that make the algebra much simpler without changing

the qualitative answer. We must compute two matrices, H and S, which will involve

integrals between pz orbitals on different carbon atoms:

Hij =

∫
pizĤpjzdτ Sij =

∫
pizp

j
zdτ.

The first approximation that we make is that all of the pz orbitals are orthonormal.

This means that:

Sij =

{
1 i = j

0 i 6= j

Equivalently, this means S is the identity matrix, which reduces our generalized eigen-

value problem (see 5.61 Lecture Notes 24Supplement for an approach to the generalized

eigenvalue problem) to a normal eigenvalue problem

H · cα = EαS · cµ [S · cµ = cα] ⇒ H · cα = Eµc
α.

The second approximation is to assume that all Hamiltonian integrals vanish if

they involve atoms i, j that are not nearest neighbors. This daring simplifica-

tion makes some sense, because when the pz orbitals are far apart they will have very

little spatial overlap, leading to an integrand that is nearly zero everywhere. We note

also that it seems reasonable that the diagonal (i = j) terms must all be the same

because they involve the average energy of an electron in a carbon pz orbital:

Hii =

∫
pizĤpizdτ ≡ α.

Because it describes the energy of an electron on a single carbon atom, α is often called

the “on-site energy”. Meanwhile, for any two nearest neighbors, the matrix element

will also be assumed to be constant:

Hij =

∫
pizĤpjzdτ ≡ β i, j neighbors.
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This last approximation is likely to be valid as long as the C-C bond lengths in the

molecule are all nearly equal. If there is significant bond length alternation (e.g. sin-

gle/double/single. . . ) then this approximation can be relaxed to allow β to depend

parametrically on the C-C bond distance. As we will see, β allows us to describe the

electron delocalization that comes from multiple resonance structures and hence it is

often called a “resonance integral”. There is some debate about what the “right” val-

ues for the α, β parameters are, but one widely accepted choice is α = −11.2 eV and

β = −0.7 eV. Note both α and β are negative because they express stabilization of the

orbital. [Can we ever know the sign of an off-diagonal matrix element?]

3) Solve the generalized eigenvalue problem. Here, we almost always need to use a

computer. But because the Hückel Theory matrices are so simple, we can usually find

the eigenvalues and eigenvectors very quickly.

4) Occupy the orbitals according to a stick diagram. At this stage, we note that

from our N pz orbitals we will obtain N π orbitals. Further, each carbon atom has

one free valence electron to contribute, for a total of N electrons that will need to

be accounted for (assuming that the molecule is neutral). Accounting for spin, then,

there will be N/2 occupied molecular orbitals and N/2 unoccupied ones. For the

ground state, we of course occupy the lowest energy orbitals.

5) Compute the energy. Being a very approximate form of MO theory, Hückel the-

ory uses the non-interacting electron energy expression (neglect of the inter–electron

repulsion term, e2/ rij):

Etot =
N∑
i=1

Ei

where Ei are the MO eigenvalues of the occupied orbitals determined in the third step.

To illustrate how we apply Hückel theory in practice, let’s work out the energy of benzene

as an example.

z

2

1

6 5

4

3
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1) Each of the MOs is a linear combination of 6 pz orbitals

ψµ =
6∑
i=1

cµi p
i
z → cµ =


cµ1
cµ2
cµ3
cµ4
cµ5
cµ6


2) It is relatively easy to work out the matrix elements of the Hamiltonian. It is a 6× 6

matrix. The first rule implies that every diagonal element is α:

H =


α

α
α

α
α

α


The only other non-zero terms will be between neighbors: 1-2, 2-3, 3-4, 4-5, 5-6 and

6-1(!). All these elements are equal to β:

H =


α β β
β α β

β α β
β α β

β α β
β β α


Notice the β’s in the 1,6 and 6,1 positions! All closed-ring structures have this often

forgotten feature.

All the rest of the matrix elements involve non-nearest neighbors and thus are zero:

H =


α β 0 0 0 β
β α β 0 0 0
0 β α β 0 0
0 0 β α β 0
0 0 0 β α β
β 0 0 0 β α


3) Finding the eigenvalues of H is easy with a computer. We find 4 distinct energies:
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E6 = α− 2β

E4 = E5 = α− β

E2 = E3 = α + β

E1 = α + 2β

The lowest and highest energies are non-degenerate. The second/third and fourth/fifth

energies are two-fold degenerate. With a little more work we can obtain the eigenvec-

tors. They are:
Nodal planes go through
atoms with 0 amplitude or
between atoms with
amplitudes of opposite signs

c1 = 6−1/2


+1
+1
+1
+1
+1
+1



t t2

t t1

t t
6

no nodal plane

c2 = 4−1/2


0

+1
+1
0
−1
−1



t t
t t1

t t

one nodal plane
through atoms 1
and 4

c3 = 12−1/2


+2
+1
−1
−2
−1
+1



t t2

t t1

t t

3

one nodal plane
through the 2-3
and 5-6 bonds
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c4 = 4−1/2


0

+1
−1
0

+1
−1



t t2

t t1

t t

3

two nodal planes
through atoms 1
and 4 and bonds
2-3 and 5-6

c5 = 12−1/2


+2
−1
−1
+2
−1
−1



t t2

t t1

t t��
��
��
��
��
��
��
��
�HHHHHHHHHHHHHHHHH

two nodal planes,
one through the
1-2 and 4-5
bonds, one
through 3-4 and
6-1 bonds

c6 = 6−1/2


+1
−1
+1
−1
+1
−1



t t
t t

t t��
��
��
��
��
��
��
��
�HHHHHHHHHHHHHHHHH

three nodal
planes, each
through an
opposite pair of
bonds.

Recall that the number of nodes⇔energy order.

We expect two-fold degeneracies for orbitals 2, 3, and 4, 5. You should verify that the

six normalized MOs exactly “use up” each of the AOs.

4) There are 6 π electrons in benzene, so we doubly occupy the 3 lowest energy MOs:

E6 = α− 2β

E4 = E5 = α− β

E2 = E3 = α + β

E1 = α + 2β
? ?

6 6

?

6

5) The Hückel energy of benzene is then:

E = 2E1 + 2E2 + 2E3 = 6α + 8β.
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Now, we arrive at the interesting part. What does this tell us about the bonding in

benzene? Well, first we note that benzene is somewhat more stable than a typical system

with three double bonds would be. If we do Hückel theory for ethylene, we find that a single

ethylene double bond has an energy

EC=C = 2α + 2β.
reacall that β is negative be-
cause it represents stabiliza-
tion

Thus, if benzene simply had three isolated double bonds, we would expect it to have a

total energy of

E = 3EC=C = 6α + 6β,

which is too small by 2β. We recall that β is negative, so that the π-electrons in benzene

are more stable than a collection of three isolated double bonds. We call this

“aromatic stabilization”, and Hückel theory predicts a similar stabilization of other cyclic

conjugated systems with 4N + 2 electrons (N = 1, 2, . . . ). This energetic stabilization

explains in part why benzene is so unreactive compared to other unsaturated hydrocarbons.

We can go one step further in our analysis and look at the bond order. In Hückel theory

the bond order can be defined as:

Oij ≡
occ∑
µ=1

cµi c
µ
j .

This definition incorporates the idea that, if a molecular orbital µ includes a bond between

the ith and jth carbons, then the coefficients of the µth MO on those carbons must both have

the same sign (e.g. we have piz + pjz). If the µth orbital is antibonding between i and j, the

coefficients must have opposite signs (e.g. we have piz − pjz). The summand above reflects

this because

cµi c
µ
j > 0 if cµi , c

µ
j have the same sign

cµi c
µ
j < 0 if cµi , c

µ
j have opposite signs.

Thus the formula gives a positive contribution for bonding orbitals and a negative contribu-

tion for antibonding orbitals. The summation over the occupied orbitals just sums up the

bonding or antibonding contributions from all the occupied MOs for the particular i, j–pair

of carbons to get the total bond order. Note that, in this summation, each doubly occupied
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orbital will appear twice. Applying this formula to the 1-2 bond in benzene, we find that:

O12 ≡ 2cµ=1
1 cµ=1

2 + 2cµ=2
1 cµ=2

2 + 2cµ=3
1 cµ=3

2

= 2

(
1√
6

)
×
(

1√
6

)
+ 2

(
1√
4

)
×
(

0√
4

)
+ 2

(
2√
12

)
×
(

1√
12

)
= 2

1

6
+ 2

2

12
=

2

3
.

Thus, the C1 and C2 atoms formally appear to share 2/3 of a π-bond [recall that we are

omitting the σ-orbitals, so the total bond order would be 1 2/3 including the σ bonds]. We

can repeat the same procedure for each C-C bond in benzene and we will find the same

result: there are 6 equivalent π-bonds, each of order 2/3. This gives us great confidence in

drawing the Lewis structure that we all learned in freshman chemistry:
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is antibonding between i and j, the coefficients should have opposite 
signs(e.g. we have pz

i - pz
j).  The summand above reflects this because 

0           if ,  have same sign

0           if ,  have opposite sign
i j i j

i j i j

c c c c

c c c c

µ µ µ µ

µ µ µ µ

>

<
 

Thus the formula gives a positive contribution for bonding orbitals and a 
negative contribution for antibonding.  The summation over the occupied 
orbitals just sums up the bonding or antibonding contributions from all the 
occupied MOs for the particular ij-pair of carbons to get the total bond 
order.  Note that, in this summation, a doubly occupied orbital will appear 
twice.  Applying this formula to the 1-2 bond in benzene, we find that: 

O12 ≡ 2c1
µ=1c2

µ=1 + 2c1
µ=2c2

µ=2 + 2c1
µ=3c2

µ=3

= 2 +1
6

⎛
⎝⎜

⎞
⎠⎟
× +1

6
⎛
⎝⎜

⎞
⎠⎟

+ 2 +1
12

⎛
⎝⎜

⎞
⎠⎟
× +2

12
⎛
⎝⎜

⎞
⎠⎟

+ 2 +1
4

⎛
⎝⎜

⎞
⎠⎟
× 0

4
⎛
⎝⎜

⎞
⎠⎟

= 2 1
6

+ 2 2
12

= 2
3

 

Thus, the C1 and C2 formally appear to share 2/3 of a π-bond [Recall that we 
are omitting the σ-orbitals, so the total bond order would be 1 2/3 including 
the σ bonds].  We can repeat the same procedure for each C-C bond in 
benzene and we will find the same result: there are 6 equivalent π-bonds, 
each of order 2/3. This gives us great confidence in drawing the Lewis 
structure we all learned in freshman chemistry: 

 
You might have expected this to give a bond order of 1/2 for each C-C π-
bond rather than 2/3.  The extra 1/6 of a bond per carbon comes directly 
from the aromatic stabilization: because the molecule is more stable than 
three isolated π-bonds by 2β, this effectively adds another π-bond to the 
system, which gets distributed equally among all six carbons, resulting in an 
increased bond order.  This effect can be confirmed experimentally, as 
benzene has slightly shorter C-C bonds than non-aromatic conjugated 
systems, indicating a higher bond order between the carbons. 
 
Here, we have used the simplest possible form of MO theory to study a 
special class of molecules - π conjugated systems.  However, we can extend 

But this structure is somewhat misleading! You might have expected this structure to give

a bond order of 1/2 for each C-C π-bond rather than 2/3. The extra 1/6 of a bond per

carbon directly reflects the aromatic stabilization: because the molecule is more stable by

2β than three isolated π-bonds. This effectively adds another π-bond to the system, which

gets distributed equally among all six carbons, resulting in an increased bond order. This

effect can be confirmed experimentally, as benzene has slightly shorter C-C bonds than non-

aromatic conjugated systems, which indicates a higher bond order between all of the adjacent

carbons.

Here, we have used the simplest possible form of MO theory to study a special class of

molecules — π conjugated systems. However, we can extend this qualitative MO picture in

many ways to treat a greater variety of systems:

• Non-Nearest Neighbor (NNN) Interactions. For benzene, adding, say, next

nearest neighbor (NNN) interactions turns out to have negligible effect on the MOs.

In a less highly constrained system, NNN interactions will have some effect on the MOs,

but typically this effect is small. However, NNN terms do alter the energy in significant

ways and thus offer additional flexibility when quantitative accuracy is desired.
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• Bond Length Alternation. It is clear that if two bonds have different lengths, they

should be associated with different values of β parameters. Shorter bonds lead to

stronger orbital overlap and will generally lead to larger (more negative) values of β

. We can model this by assuming that β is a function of the bond length, R. For

example, we might guess something like β(R) = β0e
−γR. The value of γ would encode

the rate of decay of the atomic wavefunctions involved: more tightly held electrons

would have wavefunctions that decay faster and thus have larger γ. Note that in

our Hückel Theory calculation for benzene we assumed that all the β parameters for

benzene are the same, which amounts to assuming that all bonds have equal (or nearly

equal) length.

• Heteroatoms and Substituents. Even for conjugated systems, one is often inter-

ested in molecules that have heteroatoms, like nitrogen or oxygen, and substituents, like

chlorine or methyl groups attached to one of the C atoms in the conjugated system.

We can study these systems within the Hückel picture by using distinct values of α and

β parameters for the chemically distinct atoms and bonds. The different atoms will

primarily modify the α values. For examples, (i) the electronegativity of N is much

larger than that of C, and (ii) an electron withdrawing substituent group will tend to

make the carbon to which it is attached significantly more electrophilic (larger negative

value of α) . . . . All of these effects are best represented by modifying α. There may

also be attendant changes in β (smaller |β| is associated with larger |α|.) for the same

reasons discussed under “bond length alternation”, but these effects will be largely

offset by the fact that atoms that form shorter bonds (like N) also tend to have or-

bitals with faster spatial decay. It is also important to note that when the site energies

change, electrons will be shared unequally between the atoms, just as illustrated by

LCAO-MO theory for AB polar bonding in heteronuclear diatomic molecules. In such

cases, we can compute the charge on each atom using a formula similar to the bond

order indicator, but involving only 1 atom:

qi ≡
occ∑
µ=1

cµi c
µ
i .

This equation gives the number of π electrons on atom i. Roughly speaking, we

compute the number of electrons on the ith atom by counting up the number of “bonds”

it forms with itself. For benzene you should show that qi = 1 for each of the six carbon

atoms in the benzene electronic ground state.

• σ and π bonded systems. It is straightforward, in principle, to extend the Hückel

recipe to describe molecules for which both σ and π bonds are important, or where the
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σ/π distinction is not clear because the molecule is not planar. One simply includes the

s, px and py atomic orbitals (AOs) in addition to the pz AOs. Equivalently, one could

choose the hybrid valence bonding sp, sp2 or sp3 orbitals. In either case, the primary

difficulty is that many more distinct orbitals would be involved, with a correspondingly

large number of individually adjusted α and β parameters to be determined. Selecting

parameters on this scale is something of an art and must necessarily involve a great

deal of testing and empiricism. There would not be a single set of good parameters

here, but generally techniques of this sort are termed “extended Hückel theory” (EHT).

• Hückel Theory also predicts reactivity patterns. A hetero-atom or an electron

withdrawing or donating substituent gives rise to unequal bond-orders (Oij) or non-zero

atomic charges (qi) and these result in activation toward reaction at predictable sites

(and amounts) at various locations in the molecule. These correspond to “resonance

structures” that are explicitly mixed into the electronic ground state structure by

Hückel Theory.

Just as we can use simple MO theory to describe resonance structures and aromatic

stabilization, we can also use it to describe crystal field and ligand field states in transition

metal compounds and the sp, sp2 and sp3 hybrid orbitals that arise in directional bonding.

These results not only mean MO theory is a useful tool — in practice these discoveries have

led to MO theory becoming part of the way chemists think about molecules.

Non-Lecture

Rules for Matrix Multiplication: Aij i is row, j is column

(A ·B)ij =
N∑
K=1

AikBkj

The product of 2 square matrices of same dimension is a square matrix.

c is an N row by 1 column vector, c† is a 1 row by N column transposed vector. A is an

N ×N square matrix.
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Ac =


∑N

i=1A1ici∑N
i=1A2ici

. . .∑N
i=1ANici


c†A =

(
N∑
i=1

ciAi1 · · ·
N∑
i=1

ciAiN

)

c†a =
N∑
i=1

c?Iai a number

ac† =


a1c

?
1 . . . aNc

?
1

a1c
?
2 . . . aNc

?
2

. . .

a1c
?
N . . . aNc

?
N

 an N ×N square matrix

Useful Tricks

When a computer solves for the eigenvalues of a matrix (e.g. H) by “diagonalizing” it, it

also provides the eigenvectors. You can check these eigenvectors for correctness and also to

discover to which eigenvalue a particular eigenvector belongs. Here are some tests that the

eigenvectors must pass. Suppose that the matrix is N ×N . This means that

(i) the eigenvectors, cµ, are of dimension N × 1 (ie. N rows and 1 column), there are N

distinct eigenvectors (µ = 1 to N),

(ii) each of the eigenvectors is normalized, and

(iii) orthogonal to all of the other eigenvectors, and

(iv) each basis state is exactly used up by the collection of N eigenvectors.

Let us use as an example the six eigenvectors of the Hückel Theory matrix for benzene.
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(i) There are six piz basis states (i = 1 to 6) and there are six eigenvectors.

c1 = 6−1/2


1
1
1
1
1
1

 c2 = 4−1/2


0
1
1
0
−1
−1

 c3 = 12−1/2


2
1
−1
−2
−1
1



c4 = 4−1/2


0
1
−1
0
1
−1

 c5 = 12−1/2


2
−1
−1
2
−1
−1

 c6 = 6−1/2


1
−1
1
−1
1
−1


(ii) These eigenvectors are normalized as shown here

c1†c1 =
1

6
(1 + 1 + 1 + 1 + 1 + 1) = 1

c2†c2 =
1

4
(0 + 1 + 1 + 0 + 1 + 1) = 1

c3†c3 =
1

12
(4 + 1 + 1 + 4 + 1 + 1) = 1

c4†c4 =
1

4
(0 + 1 + 1 + 0 + 1 + 1) = 1

c5†c5 =
1

12
(4 + 1 + 1 + 4 + 1 + 1) = 1

c6†c6 =
1

6
(1 + 1 + 1 + 1 + 1 + 1) = 1
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(iii) These eigenvectors are mutually orthogonal, as can be shown for 6 × 5/2 = 15 combi-

nations of eigenvectors, of which I will show only 6 here.

c1†c2 = (6−1/2)
(
1 1 1 1 1 1

)
4−1/2


0
1
1
0
−1
−1

 = 24−1/2(0 + 1 + 1 + 0− 1− 1) = 0

c1†c3 = (6−1/2)(12−1/2)
(
1 1 1 1 1 1

)


2
1
−1
−2
−1
1

 = 72−1/2(2 + 1− 1− 2− 1 + 1) = 0

c1†c4 = (6−1/2)(4−1/2)
(
1 1 1 1 1 1

)


0
1
−1
0
1
−1

 = 24−1/2(0 + 1− 1 + 0 + 1− 1) = 0

c1†c5 = (6−1/2)(12−1/2)
(
1 1 1 1 1 1

)


2
−1
−1
2
−1
−1

 = (72)−1/2(2− 1− 1 +−1− 1) = 0

c1†c6 = (6−1/2)(6−1/2)
(
1 1 1 1 1 1

)
4−1/2


1
−1
1
−1
1
−1

 =
1

6
(1− 1 + 1− 1 + 1− 1) = 0

and one more for good luck!

c3†c5 = (12)−1/2(12−1/2)
(
2 1 −1 −2 −1 1

)


2
−1
−1
2
−1
−1

 =
1

12
(4− 1 + 1− 4 + 1− 1) = 0.
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(iv) Each basis state is used up among the set of eigenvectors (µ = 1 to 6), e.g. for the ith

basis state
6∑

µ=1

|cµi |
2 = 1

i = 1, the sum is
1

6
+ 0 +

1

3
+ 0 +

1

3
+

1

6
= 1

i = 2, the sum is
1

6
+

1

4
+

1

12
+

1

4
+

1

12
+

1

6
= 1

i = 3, the sum is
1

6
+

1

4
+

1

12
+

1

4
+

1

12
+

1

6
= 1

i = 4, the sum is
1

6
+ 0 +

1

3
+ 0 +

1

3
+

1

6
= 1

i = 5, the sum is
1

6
+

1

4
+

1

12
+

1

4
+

1

12
+

1

6
= 1

i = 6, the sum is
1

6
+

1

4
+

1

12
+

1

4
+

1

12
+

1

6
= 1

All OK.

(v) Correspondence between eigenvalue and eigenvector:
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One expects cµ†Hcµ = Eµ.

H =


α β 0 0 0 β
β α β 0 0 0
0 β α β 0 0
0 0 β α β 0
0 0 0 β α β
β 0 0 0 β α



Hc1 = 6−1/2


α + 2β
α + 2β
α + 2β
α + 2β
α + 2β
α + 2β

 = (α + 2β)c1

c1†Hc1 = 6−1/2
(
1 1 1 1 1 1

)
(α + 2β)c1

=
1

6
(α + 2β)6 = α + 2β OK

Hc2 = 4−1/2


β − β
α + β
β + α
β − β
−β − α
−β − α

 = 4−1/2(α + β)


0
1
1
0
−1
−1

 = (α + β)c2

c2†Hc2 = (α + β) OK

etc.
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