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Lecture #27: Non-Degenerate Perturbation Theory III 
 

Experiment↔Theory and In-Between 
 
We have seen three methods for deriving or estimating {En} and {ψn}.  Hückel Theory and 
minimal basis set LCAO-MO Theory are based on estimates of the crucial parameters based on 
intuition and experience.   They are “semi-empirical” because they are based on calibrated 
empirical estimates of fundamental-sounding quantities.  They are not “fit models”, but they 
usually involve some sort of matrix-diagonalization or small basis-set variational calculation. 
 
In contrast, Non-Degenerate Perturbation Theory is a fit model. It is based on a zero-order model 
(to define the {En} and {ψn} of a basis set) and some inconvenient terms in a realistic 
Hamiltonian, H(1), which involve directly calculable diagonal and off-diagonal matrix elements 
that are used to compute En

(1) , En
(2) , and ψn

(1) .  Perturbation Theory is, in principle, an infinite 
basis set method. We get from perturbation theory relationships between energy level formulas 
for observed levels and the structure-based formulas for VJ(R).  From this we get best possible fit 
models, relationships between fit parameters, ability to compute patterns in predicted energy 
levels, and intramolecular dynamics.  Mechanism! 
 
We are about to see ab initio computational methods that make no assumptions about empirical 
parameters.  These calculations, when extended to a very large basis set, are capable of nearly 
exact representations of the properties of real molecules.  In some sense these large basis 
calculations are identical to exact experimental measurements. Neither experiment nor 
calculation provide intuitive pictures of structure or dynamics. These intuitive pictures require 
reduction to toy models and special limiting cases.  Insight and transferable prediction require 
finding an optional location along the continuum: 
 
 empirical  — semi-empirical  — ab initio. 
 
 
What is Perturbation Theory good for? 
 

1. Computing the effects (pattern of energy levels, relative transition intensities in a 
spectrum, intramolecular dynamics) of a distortion of the potential energy 
function from an idealized form. 
* add a barrier to particle in a box or harmonic oscillator 
* include intra-mode vibrational anharmonicity (wave packet dynamics, effects on 

molecular constants ωe, ωexe) 
* include inter-mode vibrational anharmonicity (IVR, spectroscopic perturbations, 

non-radiative decay) 
 
2. The mechanism for the flow of energy between different internal degrees of 

freedom is encoded in the energy level structure.  Rates and pathways for 
intramolecular energy transfer can be computed. 
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3. Computing how the internuclear distance dependence of a molecular property is 

manifest in the experimentally observable v and J quantum number dependences 
of that quantity.  One example, the subject of this lecture, is the rotational 
“constant” operator, B(R). 

 
 
Centrifugal Distortion (D) and Vibration-Rotation Interaction (α) 
Constants 
 

E v, J( ) = hc Be −αe v +1/ 2( )[ ]J (J +1)− hcDe[J (J +1)]
2

 
 
This lecture will illustrate two surprising tricks exploited by spectroscopists: 
 

• It is possible, by observing the “pure rotation” spectrum (microwave spectroscopy) to 
measure a rotational quantity, the centrifugal distortion constant De, that provides an 
accurate measure of the harmonic vibrational frequency, ωe. 

 
• When the vibrational potential energy function, V(Q), is expanded in a power series in 

the displacement coordinate, Q, perturbation theory seems to tell us that we cannot 
determine the sign of the coefficients of odd powers of Q.  However, we can often obtain 
this sign from a cross term between rotation and vibration. 

 
The effective potential is given by 
 

V Q( ) = 1
2
kQ2 + 1

6
aQ3 + hcB(R)J (J +1)  

 
First we must express B(R) as a power series in Q.  (This is an example of how we would 
determine the dependence of any R-dependent quantity on the vibrational quantum number, v.) 
 

 

B(R)= !
2

2cµ
1
R2 cm−1[ ]

ωe =
1
2πc

k
µ
⎡

⎣⎢
⎤

⎦⎥

1/2

cm−1[ ]

 

 

note note (expected sign) 
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R ≡Q+Re do a power series expansion of 1
R2 =

1
Re

2 1+Q Re( )2

B(Q)=Be 1− 2Q
Re

+
3Q2

Re
2 +…

⎡

⎣
⎢

⎤

⎦
⎥

Q =
!

4πµcωe

⎡

⎣
⎢

⎤

⎦
⎥

1/2

a+a†( )

 

 

  

2Q
Re

=
4!

4πcµωeRe
2

⎡

⎣
⎢

⎤

⎦
⎥

1/2

a+a†( ) =
4Be
ωe

⎛

⎝
⎜

⎞

⎠
⎟

1/2

a+a†( )

3Q2

Re
2 =

3Be
ωe

a+a†( )2

⎫

⎬

⎪
⎪

⎭

⎪
⎪

from B(Q)

1
6
aQ3 =

a
6

!
4πcµωe

⎡

⎣
⎢

⎤

⎦
⎥

3/2

absorb all of these constants
temporarily into the fit
parameter, A

" #$$$$$$$$
(a+a†)3 = A(a+a†)3 from V (Q)

 

 
A is a constant (in energy units) the sign of which is the same as that of a in aQ3. 
 
We are ready to begin to treat this problem by perturbation theory. 
 

EvJ
(0 ) = vJ |H(0 ) | vJ = hcωe (v +1/ 2)+ hcBeJ (J +1)

H(1) = hcBeJ (J +1) −
4Be
ωe

⎛
⎝⎜

⎞
⎠⎟
1/2

a + a†( )+ 3Be
ωe

a + a†( )2
⎡

⎣
⎢

⎤

⎦
⎥ +A(a + a† )3

∆ v = ±1 ∆ v = 0,±2 ∆ v = ±1,±3

 

 
We begin by computing Evj

(1) : 
 
 There is only one term with a ∆v = 0 selection rule: 

part of H(0) 

parts of H(1) 
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EvJ
(1) = vJ |H(1) | vJ = hcBeJ (J +1)

3Be

ωe

(2Nv +1)
⎡

⎣
⎢

⎤

⎦
⎥ from ∆ v= 0( )

EvJ
(1) = hcBeJ (J +1) 6Be

ωe

(v+1/ 2) J(J +1)(v+1 / 2) is the quantum number coefficient of αe[ ]

αe = −
6Be

2

ωe

.

 

 
This is the harmonic contribution to the vibration-rotation constant, αe.  Note that αe < 0, thus Bv 
increases as (v + ½).  We expect the vibrational excitation would on average lengthen R, thus 
cause Bv to decrease with v.  But the harmonic contribution exhibits the opposite behavior.  
WHY? 
 
Now we look at the effects of the ∆v ≠ 0 matrix elements on EvJ. 
 
∆v = ±1 matrix elements, from both (a + a†) and (a + a†)3 terms in H(1): 
 

 

v (a + a† ) v +1 = (v +1)1/2

v (a + a† ) v −1 = v1/2

(a + a† )3 = a3
∆ v=−3
 + a†3

∆ v=+3
 + 3(a2a† − a)

∆ v=−1
   + 3(a†2a + a† )

∆ v=+1
  

 

v (a + a† )3 v +1 = v 3(a†2a + a† ) v +1 = 3(v +1)3/2

v (a + a† )3 v −1 = v 3(a2a† − a) v −1 = 3v3/2
 

We are going to get a cross-term in EvJ
(2 )  between the hcBeJ(J + 1) 

4Be
ωe

⎛
⎝⎜

⎞
⎠⎟
1/2

 and A(a + a†)3 

terms. 
 
∆v = ±2 
 

v (a + a† )2 v + 2 = (v + 2)(v +1)[ ]1/2

v (a + a† )2 v − 2 = v(v −1)[ ]1/2
 

∆v = ±3 
 

 
v (a + a† )3 v+ 3 = (v+ 3)(v+ 2)(v+1)[ ]1/2

v (a + a† )3 v− 3 = (v− 2)(v−1)v[ ]1/2
 

 
Some algebra (the terms numbered 1 - 5 in the first equation are shown in simplified form in the 
second equation): 
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Evj
(2 ) = hcBeJ(J+1)[ ]2

4Be
ωe

⎛

⎝
⎜

⎞

⎠
⎟
v+1
−hcωe

+
v

hcωe

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎩

−2 hcBeJ(J+1)[ ]
4Be
ωe

⎛

⎝
⎜

⎞

⎠
⎟

1/2

A 3(v+1)3/2 (v+1)1/2

−hcωe

+
3(v)3/2 v1/2

hcωe

⎡

⎣
⎢

⎤

⎦
⎥

+A2 9 (v+1)
3

−hcωe

+
v3

hcωe

⎡

⎣
⎢

⎤

⎦
⎥
⎫
⎬
⎪

⎭⎪

+ hcBeJ(J+1)[ ]2
3Be
ωe

⎛

⎝
⎜

⎞

⎠
⎟

2 (v+2)(v+1)
−2hcωe

+
v(v−1)
2hcωe

⎡

⎣
⎢

⎤

⎦
⎥

+A2 (v+ 3)(v+2)(v+1)
−3hcωe

+
(v−2)(v−1)v

3hcωe

⎡

⎣
⎢

⎤

⎦
⎥

 

 
[1, 2, and 3 are ∆v = ±1 terms from [–B + A]2 = B2 – 2AB +A2] 
 

EvJ
(2 ) = −hc 4Be

3

ωe
2 [J(J+1)]

2 +24
Be
ωe

⎛

⎝
⎜

⎞

⎠
⎟

3/2

AJ(J+1)(v+1/ 2)

−
27A2

hcωe

(v+1/ 2)2 + 1
4

⎡
⎣⎢

⎤
⎦⎥

−hc Be
4

ωe
3 [J(J+1)]

2 9 (v+1/ 2)+ 1
2

⎡
⎣⎢

⎤
⎦⎥

−
A2

hcωe

3(v+1/ 2)2 + 5
4

⎡
⎣⎢

⎤
⎦⎥
.

 

 

1 

2 

3 

4 

5 

1 

5 

4 

3 

2 

combine ∆v = ±1 
and ∆v = ±3 terms 
from Q3 
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Thus 

De =
4Be

3

ωe
2 (Kratzer equation)

αe = −24A
Be

ωe

⎛

⎝
⎜

⎞

⎠
⎟

3/2

−
6B e

2

ωe

  Bv =Be −αe (v+1/ 2( )  A < 0( )

ωexe =
30A2

ωe

βe = −
9Be

4

ωe
3 Dv =De +βe (v+1/ 2)( ) coefficient of J J+1( )[ ]2

v+1/ 2( )⎡⎣ ⎤⎦

 

 
Note that, if A < 0, then αe > 0 and Bv decreases as v increases.  For A < 0, the cubic term causes 
the potential energy curve to have the physically expected asymmetry.  What is that? 
 
Non-degenerate perturbation theory is a tool that no experimental spectroscopist can live 
without.  It provides surprising and useful inter-relationships between observable quantities.  For 
example, if we have a molecular property, C, that is a function of internuclear distance, C(R), 
then we can derive C(R) from experimental observations of Cv,J.  It permits honing of intuition.  It 
provides the observable consequences of every imaginable departure from ideality.  It explains 
why experimentalists and theorists often “fail to communicate” because they use the same 
symbol to refer to physically different quantities. 

Note that A is not squared! 
So we sample its negative sign. 

1 

2 

3 + 5 

4 

from E(1) 
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