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MODERN ELECTRONIC STRUCTURE THEORY: Basis Sets 
At this point, we have more or less exhausted the list of electronic 
structure problems we can solve by hand.  If we were limited to solving 
problems manually, there would be a lot of chemistry we wouldn’t be able to 
explain!  Fortunately, the advent of fast personal computers allows chemists 
to routinely use more accurate models of molecular electronic structure.  
These types of calculations typically play a significant role in interpreting 
experimental results: calculations can be used to assign spectra, evaluate 
reaction mechanisms and predict structures of molecules.  In this way 
computation is complementary to experiment: when the two agree we have 
confidence that our interpretation is correct.   
 
The basic idea of electronic structure theory is that, within the Born 
Oppenheimer approximation, we can fix the M nuclei in our molecule at some 
positions RI.  Then, we are left with the Hamiltonian for the electrons 
moving in the effective field created by the nuclei: 
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Where the first term is the kinetic energy of all N electrons, the second 
term is the attraction between the electrons and nuclei and the third is the 
pairwise repulsion between all the electrons.  The central aim of electronic 
structure theory is to find all the eigenfunctions of this Hamiltonian.  As 

we have seen, the eigenvalues we 
get will depend on our choice of 
the positions of the nuclei – 
Eel(R1,R2,R3,…RM).  As was the 
case with diatomics, these 
energies will tell us how stable 
the molecule is with a given 
configuration of the nuclei {RI} – 
if Eel is very low, the molecule will 
be very stable, while if Eel is high, 
the molecule will be unstable in 

that configuration. The energy Eel(R1,R2,R3,…RM) is called the potential 
energy surface, and it contains a wealth of information, as illustrated in the 
picture at above.  We can determine the equilibrium configuration of the 
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molecule by looking for the minimum energy point on the potential energy 
surface.  We can find metastable intermediate states by looking for local 
minima – i.e. minima that are not the lowest possible energy states, but which 
are separated from all other minima by energy barriers.  In both of these 
cases, we are interested in points where 0elEÑ = . Further, the potential 
surface can tell us about the activation energies between different minima 
and the pathways that are required to get from the “reactant” state to the 
“product” state.   
 
Solving the electronic Schrödinger also gives us the electronic 
wavefunctions Yel(r1,r2,r3,…rN), which allow us to compute all kinds of 
electronic properties – average positions, momenta, uncertainties, etc – as 
we have already seen for atoms.   
 
We note that while the Hamiltonian above will have many, many eigenstates, 
in most cases we will only be interested in the lowest eigenstate – the 
electronic ground state.  The basic reason for this is that in stable 
molecules, the lowest excited states are usually several eV above the ground 
state and therefore not very important in chemical reactions where the 
available energy is usually only tenths of an eV.  In cases where multiple 
electronic states are important, the 
Hamiltonian above will give us 
separate potential surfaces E1

el, E2
el, 

E3
el … and separate wavefunctions 

Y1
el, Y2

el, Y 3
el. The different 

potential surfaces will tell us about 
the favored conformations of the 
molecules in the different electronic 
states. We have already seen this 
for H2

+.  When we solved for the 
electronic states, we got two 
eigenstates: s and s*.  If we put the electron in the s orbital, the molecule 
was bound and had a potential surface like the lower surface at right.  
However, if we put the electron in the s* orbital the molecule was not bound 
and we got the upper surface. 
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So, at the very least our task is clear cut: solve for the eigenstates of Eq. 1.  
Unfortunately, this task is also impossible in practice, even on a computer.  
Thus, over the years chemists have developed a vast array of sophisticated 
techniques that allow us to at least approximate these solutions to within a 
tolerable degree of accuracy.  Learning all the details of these 
approximations would require a course unto itself: the derivations of the 
individual approximations are exceedingly complex, and the sheer number of 
different approximations that can be made is quite impressive.  These 
detailed derivations teach us a lot about what molecules and properties we 
should expect our approximations to work for and how we should think about 
improving our calculations in cases where the theory fails. However, the 
thing that has really brought computational chemistry into the mainstream is 
the fact that one does not have to understand every nuance of a method 
in order to know how to use it successfully.  It suffices to have a simple, 
qualitative understanding of how each method works and when it can be 
applied.  Then, coupling that knowledge with a little technical proficiency at 
using commercial chemistry software packages allows us to run fairly 
sophisticated calculations on our desktop computer.  The next two lectures 
are intended to prepare us to run these types of calculations. 
 
First, we note that nearly all the popular approximations are still based on 
MO theory – MO theory on steroids in some cases, but MO theory 
nonetheless.  Thus, there are still 5 steps in the calculation 

1) Choose an Atomic Orbital Basis 
2) Build the Relevant Matrices 
3) Solve the Eigenvalue Problem 
4) Occupy the orbitals based on a stick diagram 
5) Compute the energy 

In a typical calculation, the computer automatically handles steps 2-4 
automatically – we don’t have to tell it anything at all.  It is sometimes 
helpful to know that the computer is doing these things (e.g. The calculation 
crashed my computer.  What was it doing when it crashed? Oh, it was trying 
to solve the eigenvalue problem.) but we essentially never have to do them 
ourselves.  This leaves two steps (1 and 5) that require some input from us 
for the calculation to run properly 
 
Choosing an Atomic Orbital Basis 
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The first point here is that for real electronic structure calculations, you 
typically use a basis set that is much larger than your intuition might tell 
you.  For example, for H2

+ we guessed that we would get a decent result if 
we wrote: 
 1 21 1 Bc sA c sy = +  
A basis of this type would be called a minimal basis set, because it is the 
smallest one that is even close to right.  In a more accurate calculation, you 
might use a basis that looks more like: 

1 2 3 4 5 6 7

8 9 10 11 12

1 1 2 2 2 2 2

2 2 2 3 3
A B A B xA xB yA

yA zA zB A B

c s c s c s c s c p c p c p
c p c p c p c s c s

y = + + + + + +

+ + + + +
 

The reason we use such extended basis sets arises from a point that was 
discussed earlier concerning MO theory. Because our results are variational, 
a bigger basis always gets us a lower energy, and therefore a longer AO 
expansion always gets us closer to the ground state energy.  In the worst 
case, the unimportant basis functions will just have coefficients that are 
very near zero.  While such extended basis sets would be a significant 
problem if we were working things out by hand, computers have no problem 
dealing with expansions involving even 10,000 basis functions. 
 
The second important point about the atomic orbitals we use is that they are 
not hydrogenic orbitals.  The reason for this is that the two-electron 
integrals involving hydrogenic orbitals cannot all be worked out analytically, 
making it very difficult to complete Step 2.  Instead of hydrogenic orbitals – 
which decay like re-  – we will use Gaussian orbitals that decay like 2re a- .  
Gaussians do not look very much like 
hydrogenic orbitals – they don’t have a cusp 
at r=0 and they decay much too fast at 
large distances.  About the only good thing 
about them is that they have a mximum at 
r=0 and decay.  These differences between 
Gaussians and hydogenic orbitals are not a 
problem, though, because we use extended 
basis sets as emphasized above.  Basically, 
given enough Gaussians, you can expand 
anything you like – including a hydrogenic 
orbital, as shown in the picture at right. 
Here, we plot a hydrogen 1s orbital in red together with the best approximation 
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we can get to it with a linear comination of one, two or three Guassians.  So 
while using Gaussians may mean we have to use a few extra AOs, if we use 
enough of them we should be able to get the same answer.    
 
So we plan to use relatively large Gaussian basis sets for our calculations.  
How exactly do we choose those basis sets?  Thankfully, a significant amount 
of trial-and-error research has distilled the choices down to a few key basis 
set features.  The result is that there exists a number of accurate basis 
sets available to us.  A basis set is just a pre-defined set of AO basis 
functions for each atom in the periodic table.  To use a particular basis set, 
we just need to specify the name  of the basis set and then the computer 
goes through and picks the correct AOs for every atom in our molecule. 
Depending on the problem at hand and the accuracy desired we need to 
consider three important aspects of the AO basis set. 
 

Single, Double, Triple, Quadruple Zeta Basis Sets 
As we have already discussed for MO theory of diatomics, the smallest basis 
we can think of for describing bonding would include all the valence orbitals 
of each atom involved.  Thus, for H we had 1 s-function, for C there were 2 
s-functions and one set of p’s.  Similarly, for sulfur we would have needed 3 
s-functions and 2 p’s …. A basis of this size is called a minimal or single zeta 
basis.  The term “single zeta” refers to the fact that we have only a single 
set of the valence functions (Note: single valence might seem like a more 
appropriate name, but history made a different choice).  The most important 
way to expand the basis is to include more than a single set of valence 
functions.  Thus, in a double zeta (DZ) basis set, one would include 2 s-
functions for H, 3 s- and 2 p-functions for C and 4 s- and 3 p-functions for 
S.  Qualitatively, we think of these basis functions as coming from increasing 
the n quantum number: the first s function on each atom is something like 1s, 
the second something like 2s, the third like 3s …. Of course, since we are 
using Gaussians, they’re not exactly 1s, 2s, 3s … but that’s the basic idea.  
Going one step further, a triple zeta (TZ) basis would have: H=3s, C=4s3p, 
S=5s4p.  For Quadruple zeta (QZ): H=4s, C=5s4p, S=6s5p and so on for 5Z, 
6Z, 7Z. Thus, one has: 
  H,He  Li-Ne  Na-Ar  Names 
Minimal 1s  2s1p  3s2p  STO-3G 
DZ  2s  3s2p  4s3p  3-21G,6-31G, D95V 
TZ  3s  4s3p  5s4p  6-311G,TZV 
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Unfortunately, the commonly used names for basis sets follow somewhat 
uneven conventions.  The basic problem is that many different folks develop 
basis sets and each group has their own naming conventions.  At the end of 
the table above, we’ve listed a few names of commonly used SZ,DZ and TZ  
basis sets.  There aren’t any commonly used QZ basis sets, because once 
your basis is that large, it is best to start including polarization functions 
(see below). 
 

Polarization Basis Functions 
Note that no matter how high you go in the DZ, TZ, QZ hierarchy, you will 
never, for example, get a p-function on hydrogen or a d-function on carbon.  
These functions tend to be important for describing polarization of the 
electrons; at a qualitative level, the p-functions aren’t as flexible in their 
angular parts and it’s hard to get them to “point” in as many directions as d-
functions.  Thus, particularly when dealing with directional bonding in 
molecules, it can be important to include some of these higher angular 
momentum functions in your AO basis.  In this situation the basis set is said 
to contain some “polarization” functions.  The general nomenclature of 
polarization functions is to add the letter “P” to a basis set with a single set 
of polarization functions, and “2P” to a basis with two sets.  Thus, a DZP 
basis would have: 2s1p on hydrogen, 3s2p1d on carbon and 4s3p1d on sulfur. 
A TZP basis set would have 3s1p on hydrogen, 4s3p1d on carbon and 5s4p1d 
on sulfur. 
 
   H,He  Li-Ne  Na-Ar  Names 
DZP  2s1p  3s2p1d 4s3p1d 6-31G(d,p), D95V 
TZP  3s1p  4s3p1d 5s4p1d 6-311G(d,p),TZVP 
 
We note that in practice it is possible to mix-and-match different numbers 
of polarization functions with different levels of zeta basis sets.  The 
nomenclature here is to put (xxx,yyy) after the name of the basis set.  “xxx” 
specifies the number and type of polarization functions to be placed on 
Hydrogen atoms and “yyy” specifies the number and type of polarization 
functions to be placed on non-hydrogen atoms.  Thus, we would have, for 
example: 
 
   H,He  Li-Ne  Na-Ar   
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6-311G(2df,p) 3s1p  4s3p2d1f 5s4p2d1f  
    

Diffuse Functions 
Occasionally, and particularly when dealing with anions, the SZ/DZ/TZ/… 
hierarchy converges very slowly.  For anions, this is because the extra 
electron is only very weakly bound, and therefore spends a lot of time far 
from the nucleus.  It is therefore best to include a few basis functions that 
decay very slowly to describe this extra electron.    Functions of this type 
are called “diffuse” functions.  They are still Gaussians ( 2re a- ), but the value 
of a is very, very small causing the atomic orbital to decay slowly.  Similar to 
the situation for polarization functions, diffuse functions can be added in a 
mix-and-match way to standard basis sets.  Here, the notation “+” or “aug-“ 
is added to a basis set to show that diffuse functions have been added.  
Thus, we have basis sets like 3-21++G, 6-31+G(d,p), aug-TZP.   
 
 
Aside: Transition Metals 
Those of you interested in inorganic chemistry will note that no transition 
metals appear in the tables above.  This is not because there aren’t basis 
sets for transition metals – it is just more complicated to compare different 
transition metal basis sets.  First, we note that many of the basis sets above 
are defined for transition metals.  Thus, for example, a 6-31G(d,p) basis on 
iron is 5s4p2d1f while a TZV basis for iron is 6s5p3d.  The reason we didn’t 
include this above is that the idea of “valence” for a transition metal is a 
subject of debate: is the valence and s- and d- function?  An s a p and a d?  
Hence, depending on who put the basis set together, there will be some 
variation in the number of functions.  However, one still expects the same 
ordering in terms of quality: TZ will be better than DZ, DZP will be better 
than a minimal basis, etc.  Thus, you can freely use the above basis sets for 
all the elements between K and Kr without significant modification. 
Extending the above table for specific basis sets gives: 
 
   K-Ca   Sc-Zn   Ga-Kr 
3-21G   5s4p   5s4p2d  5s4p1d 
6-31G(d,p)  5s4p1d  5s4p2d1f  N/A 
6-311G(d,p)  8s7p2d  N/A   8s7p3d 
TZV   6s3p   6s3p2d  6s5p2d 
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Things also become more complicated when dealing with second row 
transition metals.  Here, relativistic effects become important, because the 
Schrödinger equation predicts that the 1s electrons in these atoms are 
actually moving at a fair fraction of the speed of light.  Under these 
circumstances, the Schrödinger equation is not strictly correct and we need 
to start considering corrections for relativistic effects.  The most efficient 
way to incorporate the relativity is to use an effective core potential (ECP).  
An effective core potential removes the core electrons from the problem 
and replaces them with an effective potential that the valence electrons 
feel.  This potential reflects the combined interaction with the nucleus and 
the (relativistic) core electrons.   Thus, for an ECP we specify both how many 
core electrons we want to neglect and how many basis functions we want to 
use to describe the valence electrons.  For example, one popular double zeta 
ECP is the LANL2DZ basis.  As an example, for ruthenium LANL2DZ 
replaces the 28 core electrons (1s22s22p63s23p63d10=Argon) with an 
effective potential and uses a 3s3p2d basis to describe the valence orbitals.  
Thus, for the second transition series we have (using 
[CoreSize]/ValenceBasisSize as our shorthand): 
    Y-Cd    Hf-Hg   
LANL2DZ  [Argon]/3s3p2d   N/A 
SDD   [Argon]/8s7p6d  [Kr4d104f14]/8s7p6d  
 
As one progresses further up the periodic table, fewer and fewer basis sets 
are available, simply because less is known about these elements chemistry. 
 
This is just a very brief overview of what basis sets are available and how 
good each one is expected to be.  The general idea of using basis sets is to 
use larger and larger basis sets until the quantity we are computing stops 
changing.  This is based on the idea that we are really using the AO 
expansion to approximate the exact solution of the Schrödinger equation.  If 
we had an infinite basis, then we would get the exact answer, but with a 
large and finite basis we should be able to get close enough.  Note, however, 
that the calculation will typically take more time in a larger basis than in a 
smaller one.  Thus, we really want to make the basis just big enough to get 
the answer right, but no larger. 
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 It is worth mentioning in closing that there is something of a double 
whammy when it comes to basis sets for very accurate calculations.  In the 
next lecture we will see that there are 
two general classes of methods: Self-
consistent field methods – which are less 
expensive but generally less accurate – 
and methods that include explicit 
wavefunction correlation –which are more 
accurate but more expensive. If we take 
a look at the convergence of the energy 
as we increase the size of the AO basis, 
we will see something like the graph at 
right.  The energy of SCF methods 
converges exponentially with the size of 
the basis set: we are pretty close to the infinite basis result with a DZP 
basis and certainly very close with something like TZ2P.  Meanwhile, for the 
correlated methods the convergence is slower: DZP is nowhere close and in 
practice something like a polarized QZ basis is necessary to get reasonable 
results.  This is doubly painful for correlated methods, because these 
approaches were already more expensive than SCF, and now they are even 
more formidable because we need bigger basis sets.  At present, there are 
two approaches to overcome this: First, one can fit a series of energies from 
smaller basis sets to try to extrapolate to the infinite basis set limit.  An 
even more sophisticated technique is to augment the one-electron atomic 
orbital basis with some explicit two electron functions (i.e. functions that 
depend on r12) With these terms the correlated calculations can often be 
done with much smaller AO bases, making the calculations much cheaper.  
The downside is that the equations become even more complicated when r12 is 
involved, so it takes considerable effort to implement these r12 methods. 
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