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Lecture #36:  Time Dependence of Two-Level Systems: 
 Density Matrix, Rotating Wave Approximation 
 
This lecture is based on Chapter 14 “The Density Matrix and Coherent Coupling of 
Molecules to Light” of the book Elements of Quantum Mechanics, Michael D. Fayer, 
Oxford University Press, 2001. 
 
Lecture #19 dealt with weak interactions of molecules with electromagnetic radiation.  
It is in the “linear response” region and illustrates the importance of the electric dipole 
approximation and, especially, “resonance”.  What is “linear response”?  The present 
lecture treats strong coherent interactions of electromagnetic radiation with two-level 
systems. 
 
The easily derived (by the chain rule for derivatives) equation of motion for the expecta-
tion value of any Quantum Mechanical Operator is 
 

  

d
dt

A =
i
!

H,A[ ] + ∂A
∂t

, 

 

derived by application of d
dt

 to  ,A,  and .  One operator of particular importance 

is the density operator, ρ(t).  It does more than simply repackage the information in 
Ψ(x,t). 
What is the density matrix? 
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2. Repackaging an N × N matrix that contains all of the information in Ψ(x,t). 
 

3. It minimizes the  e
−iE jt !   factors of Ψ(x,t) = 

 j
∑ cjψ j (x)e

−iE jt ! . 

 
4. It is directly observable. Its diagonal elements are populations and its off-diagonal 

elements are “coherences” that are observable as modulations at 

 
ω jk = Ej −Ek( ) !  with Fourier amplitudes cjck

* . 
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Ψ x,t( )→ t

Ψ x,t( ) = cn(t)
n
∑ ψn(x)→ t = cn(t)

n
∑ n  or t =

c1
c2

!
cn

  

 n{ }  is a complete orthonormal set of basis states 

 t  is normalized to 1 

 cn(t)
2

n
∑ =1    

 
 ρ(t)≡ t t   
 
For a two-level system 

t = c1(t) 1 + c2(t) 2

ρ11 = 1 t t 1 = 1 c1 1 + c2 2( ) c1* 1 + c2* 2( ) 1 = c1c1
*  

ρ12 = c1c2
*

ρ21 = c2c1
*

ρ22 = c2c2
*

ρ =
c1c1

* c1c2
*

c2c1
* c2c2

*
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Since t  is normalized to 1 
 

1 = |c1|
2 + |c2|

2 = Trace ρ(t) = 1 
and 
 ρij = ρ ji

*   or ρ = ρ*   
ρ  is Hermitian. Tr ρ(t) = 1 and ρ  = ρ† are general properties of N-dimensional ρ . 
 
 For the 2-level system, we want to know the time dependence of ρ:  

  

d
dt
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dt
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!ρ =
1
i"

H t( ) t t
ρ
# $%

+
1
i"
t t
ρ
# $%

H t( )

!ρ =
1
i"

H(t),ρ(t)[ ].

  

 
ASA, especially involving multiplying pairs of 2 × 2 matrices 
 

 

!ρ11 = − !ρ22 = −
i
"
H12ρ21 −H21ρ12( )

!ρ12 = !ρ21
* = −

i
"

H11 −H22( )ρ12 + ρ22 − ρ11( )H12⎡⎣ ⎤⎦

  

 
OK.  Now we are about to see some of the value of the density matrix — use the eigen-
basis for the time-independent part of H(0).  All of the time depencence is in H(1)(t). 
 

 

H =H(0) +H(1)(t)

H(0) n = En n
  

 
ASA (a lot) we get 
 

 
!ρ(t)= − i

"
H (1)(t),ρ(t)⎡⎣ ⎤⎦!  

 
all of the t-dependence of ρ is due to H(1)(t)!  All of H(0) cancels out. 
 
 
Time-Dependent two-state problem 
 
 

  
H(0) =

−!ω0 2 0
0 +!ω0 2
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∆E = !ω0 
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H (1)(t)= !ex12
µ
" #$

E0 cosωt   

 
      µE0 ≡ ω1  This is the Rabi frequency. 
 

We have 3 ω's: ω0, ω, and ω1. 

 

1 = e−iω0t /2 1́

2
t-dep.
!"

= e−iω0t /2 ʹ2
t-indep.
!"

  

 

 

H (1)(t)= !
0 ω1 cosωte

−iω0t

ω1 cosωte
iω0t 0

⎛
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!ρ = −

i
"

H(1),ρ⎡⎣ ⎤⎦  

 
get equations of motion 

 !ρ11 = iω1 cosωt e
iω0tρ12 − e

−iω0tρ21( )   

 !ρ22 = −iω1 cosωt e
iω0tρ12 − e

−iω0tρ21( )  

 !ρ12 = iω1 cosωt e
−iω0t ρ11 − ρ22( )  

 !ρ21 = −iω1 cosωt e
+iω0t ρ11 − ρ22( )  

 

 

ρ11+ ρ22 =1→ !ρ11 = − !ρ22
ρ12 = ρ21

* → !ρ12 = !ρ21
*   

 
Now for the Rotating Wave Approximation 
What is the rotating wave approximation (RWA)? 
 
1. It is a transformation of H(t), 
 

  H
!(t)=R−1HR  

 
 that cancels the time-dependence of an off-diagonal element of H(t); for example 
Hij. 
 
  

  

has units of angular frequency  

amplitude of oscillating  
electric field  
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2. Once the RWA has been applied, a unitary transformation diagonalizes the 
 

 
 

H! ij

H! ii −H! jj
  

 
interaction by 
 
   H!

! =T†R−1HRT . 
 
3. Finally, the rotation is undone 
 

  

H!! =RT†R−1HRTR−1

Ψ!!
!
=RT†RΨ

. 

 
4. The RWA may be applied sequentially to each important t-dependent off-diagonal 

element of H(t). 
 

 
cosωt = 1

2
eiωt + e−iωt( )  insert into !ρ equations   

if ω ≈ ω0, then we get 
 

e±i ω0−ω( )t  and e±i ω0+ω( )t  
 
terms.  The ω0 – ω terms are near resonance.  They oscillate slowly, but ω0 + ω ≈ 2ω0 are 
far off resonance, they oscillate very fast. 
 
Discard the rapidly oscillating terms and keep the slowly oscillating terms. 
 
Now we have 
 

 

!ρ11 = i
ω1
2

ei ω0−ω( )tρ12 − e
−i ω0−ω( )tρ21( )

!ρ22 = − !ρ11

!ρ12 = i
ω1
2
e−i ω0−ω( )t ρ11 − ρ22( )

!ρ21 = !ρ12
*

 

 
 
These coupled differential equations can be solved, subject to the RWA and to the initial 
condition that at t = 0, ρ22(0) = 0, ρ11(0) = 1. 
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∆ω ≡ω0 −ω   
 

 
 
 

ωe = ∆ω
2 +ω1

2( )1/2   
 

ρ11 =1−
ω1
2

ωe
2 sin

2 ωet / 2( )

ρ22 =
ω1
2

ωe
2 sin

2 ωet / 2( )

ρ12 =
ω1
ωe
2
iωe
2
sin ωet( )−∆ω sin2 ωet / 2( )

⎡
⎣⎢

⎤
⎦⎥
e−i∆ωt

ρ21 = ρ12
*

  

 
The populations ρ11 and ρ22 oscillate, but at ωe > ω1 and the oscillating amplitude is reduced 

because ω1
2

ωe
2 <1 . 

 
 
These ρ12 and ρ21 coherence terms look complicated.  But we will be applying the radiation 
field only for a selected value of ∆t.  This will modify the t = 0 form of ρ(t) by a “flip an-
gle”. 
 
Now for some special insights 
 
Near-resonant behavior occurs when 
 

ω1 > ∆ω 
 ↑ ↑ 
 Rabi detuning 
 freq. 
 
(ω1 represents the strength of the µε term). 
 
Near resonance, this ω1 > ∆ω gets us back to the ωe ≈ ω1 limit: 
 

level  
spacing 

applied oscillating 
field 

strength of the 
oscillating field 

Rabi frequency 
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ρ11 = cos
2 ω1 t 2( )

ρ22 = sin
2 ω1 t 2( )

ρ12 =
i
2
sin ω1t( )e−i∆ωt! "##

ρ21 = ρ12
*

  

 
Free Precession of an ensemble of many 2-level atoms or molecules. 
 
Consider the situation where, starting with ρ11 = 1, the radiation field is turned on for ∆t = 
θ
ω1

, where θ is called the “flip angle”, and then the radiation is turned off at t = 0.  The os-

cillating polarizing field is turned off at t = 0.   
 

Now we have an ensemble of free particles. 
 

NON-LECTURE 
An ensemble is a collection of independent, non-interacting particles.  They do not know 
about Boson or Fermion exchange symmetry.  There is no inter-particle coherence. 
 
The “polarizing” pulse is applied to an initially incoherent ensemble and creates a macro-
scopic (inter-particle) coherence, which produces a multi-particle oscillating electric dipole 
moment.  This oscillating dipole broadcasts an oscillating electric field, which we detect. 
 
The time evolution of ρ(t) in the absence of any radiation field is described by  
 

 

!ρ = −
i
"
H (0),ρ⎡⎣ ⎤⎦

H (0) =
−ω0 / 2 0
0 +ω0 / 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

   

 

!ρ11 = !ρ22 = 0 !ρ12 = iω0ρ12
!ρ21 = !ρ12

*
   

 
ρ11 = ρ11(0)
ρ22 = ρ22 (0)
ρ12 = ρ12 (0)e

iω0t

ρ21 = ρ12
*

  

 
the end of the excitation pulse is defined to occur at t = 0. 
 
So, at t = 0, after the completion of the polarizing pulse, which is described by a chosen 
value of the “flip angle”, ρ(0) has this form 
 

extra phase factor due to small detuning  
from resonance. 
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 flip angle 0 π/2 π 
ρ11(0)= cos

2 θ / 2( ) =    1 1/2 0 
ρ22 (0)= sin

2 θ / 2( ) =   0 1/2 1 

ρ12 (0)=
i
2
sinθ =  

 i/2(0 1 0) 

ρ21(0)= −
i
2
sinθ =  

 i/2(0 –1 0) 

 
So what is this good for? 
 

 µ t = Trace ρµ( )   [another useful computational trick] 
 

NON-Lecture 
There are two important tricks for dealing with a time-dependent H. 
 

  

d
dt

A =
i
!

H,A[ ] + ∂A
∂t

⎛
⎝
⎜

⎞
⎠
⎟

A t = Trace ρA( )
   

 
These tricks are both labor-saving and insight-generating. 
To compute Trace (ρµ) we need: 

 
µ =

0 µ
µ 0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟    

 

 

µ t = Tr(ρµ)= Tr
ρ11(0) ρ12 (0)e

iω0t

ρ21(0)e
−iω0t ρ22 (0)
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µ 0
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⎠
⎟
⎟

= µ ρ12 (0)e
iωt + ρ21(0)e

−iωt⎡⎣ ⎤⎦

 

For a “flip angle” of θ 
 

〈µ〉t = –µ(sin θ)sin(ω0t). 
 
This is an electric dipole oscillating at ω0. 
 
Its maximum oscillation amplitude is at θ = π/2. 
 
Its minimum (zero) oscillation is at θ = 0 or π. 
 
When θ = π (“π-pulse”) the system goes from ρ11 = 1, ρ22 = 0 to ρ11 = 0, ρ22 = 1. 
 
The population gets inverted from all in level 1 to all in level 2.  But there is no oscillating 
dipole!  This is very important (and perhaps counter-intuitive). 
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When θ = π/2 we get 
 
 ρ11(0)= ρ22 (0)   (equal populations in levels 1 and 2) 
 

 ρ12 (0)= ρ21
* (0)= i

2
 maximum oscillation of full µε  

 
Ensemble:  If the Rabi frequency, ω1 is the same for all points in space, all members of the 
ensemble oscillate at the same frequency, but possibly starting at different times as the po-
larizing pule propagates through the sample at v = c = 1 foot/ns. 
 

 
 
This travelling wave polarization creates an in-phase polarization, which propagates in the 
direction of the polarizing pulse.  Propagation in all other directions is killed by destructive 
interference. 
 
If the polarizing field is not spatially uniform, ω1 is not uniform and the µ1 values are not 
all the same.  Dephasing. 
 
Decay also occurs by radiation. Stimulated emission.  Superadiance! 
 

sample

pulse
v = c
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