Lecture \#6: 3-D Box and Separation of Variables

Last time:
Build up to Schrödinger Equation: some wonderful surprises

* operators
* eigenvalue equations
* operators in quantum mechanics - especially $\hat{x}=x$ and $\hat{p}_{x}=-i \hbar \frac{\partial}{\partial x}$
* non-commutation of \hat{x} and \hat{p}_{x} : related to uncertainty principle
* wavefunctions: probability amplitude, continuous! therefore no perfect localization at a point in space
* expectation value (and normalization)

$$
\begin{aligned}
\widehat{H} \psi= & E \psi \\
& * \text { Free Particle } \\
& * \text { Particle in 1-D Box (first viewing) }
\end{aligned}
$$

Today:

1. Review of Free Particle some simple integrals
2. Review of Particle in 1-D "Infinite" Box boundary conditions
pictures of $\psi_{n}(x)$, Memorable Qualitative features
3. Crude uncertainties, Δx and Δp, for Particle in Box
4. 3-D Box
separation of variables
Form of $E_{n_{x}, n_{y}, n_{z}}$ and $\psi_{n_{x}, n_{y}, n_{z}}$
5. Review of Free particle: $\mathrm{V}(x)=\mathrm{V}_{0}$

$$
\begin{gathered}
\left.\psi_{|k|}(x)=a e^{+i k x}+b e^{-i k x} \text { complex oscillatory (because } E>V_{0}\right) \\
E_{k}=\frac{(\hbar k)^{2}}{2 m}+V_{0} \quad k \text { is not quantized }
\end{gathered}
$$

$$
\begin{aligned}
\int_{-\infty}^{\infty}\left|\psi_{|k|}(x)\right|^{2} d x & =\int_{-\infty}^{\infty}\left[|a|^{2}+|b|^{2}+a * b e^{-2 i k x}+a b * e^{2 i k x}\right] d x \\
& =|a|^{2} \infty+|b|^{2} \infty+a * b 0+a b * 0 \quad \begin{array}{l}
\text { (Note what happens to } \\
\text { the product e } \left.{ }^{-i \mathrm{ikx}} \mathrm{e}^{+i \mathrm{k} x}\right)
\end{array}
\end{aligned}
$$

$$
\text { can't normalize } \psi=a e^{i k x} \text { to } 1
$$

$$
\int_{-\infty}^{\infty} d x|a|^{2} e^{-i k x} e^{+i k x}=\int_{-\infty}^{\approx} d x|a|^{2}
$$

which blows up. Instead, normalize to specified \# of particles between x_{1} and x_{2}.

Questions:

$$
\begin{aligned}
& \text { Is } \psi_{k}(x)=a e^{i k x}+b e^{-i k x} \text { an eigenfunction of } \hat{p}_{x} ? \widehat{p_{x}^{2}} \text { ? What do your answers mean? } \\
& \text { Is } e^{i k x} \text { eigenfunction of } \hat{p}_{x} \text { ? What eigenvalue? }
\end{aligned}
$$

2. Review of Particle in 1-D Box of length a, with infinitely high walls
"infinite box" or "PIB"

In view of its importance in starting you out thinking about quantum mechanical particle in a well problems, I will work through this problem again, carefully.

$$
\begin{array}{ll}
\mathrm{V}(x)=0 & 0 \leq x \leq a \\
\mathrm{~V}(x)=\infty & x<0, x>a
\end{array}
$$

Consider regions I and III.
$\mathrm{E}<\mathrm{V}(x)$

$$
\begin{aligned}
& \widehat{H}=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\infty \\
& \underbrace{\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=(\infty-E) \psi}_{\text {finite }} \underbrace{}_{\begin{array}{l}
\text { no matter what finite } \\
\text { value we choose for } \\
E, \text { the Schrödinger } \\
\text { equation can only be } \\
\text { satisfied by setting } \\
\psi(x)=0 \\
\text { throughout regions } \\
\text { I and III. }
\end{array}}
\end{aligned}
$$

So we know that $\psi(x)=0 \quad x<0, x>a$.
But $\psi(x)$ must be continuous everywhere, thus $\psi(0)=\psi(a)=0$.
These are boundary conditions.
Note, however, that for finite barrier height and width, we will eventually see that it is possible for $\psi(x)$ to be nonzero in a classically forbidden $[E<\mathrm{V}(x)]$ region.
"Tunneling." (There will be a problem on Problem Set \#3 about this.)

So we solve for $\psi(x)$ in Region II, which looks exactly like the free particle because $\mathrm{V}(x)=0$ in Region II. Free particle solution are written in \sin, \cos form rather than $e^{ \pm i k x}$ form, because application of boundary conditions is simpler. [This is an example of finding a general principle and then trying to find a way to violate it.]

$$
\psi(x)=A \sin k x+B \cos k x
$$

Apply boundary conditions

$$
\begin{array}{ll}
\psi(0)=0=0+B \rightarrow B=0 & \\
\psi(a)=0=A \sin k a \Rightarrow k a=n \pi, & k_{n}=\frac{n \pi}{a}
\end{array}
$$

Normalize: $\quad 1=\int_{-\infty}^{\infty} d x \psi * \psi=A^{2} \int_{0}^{a} d x \sin ^{2} \frac{n \pi x}{a} \rightarrow A=\left(\frac{2}{a}\right)^{1 / 2} \quad$ (Picture of normalization integrand suggests that the value of the normalization integral $=a / 2$)

Non-Lecture

Normalization integral for particle-in-a-box eigenfunctions

$$
\psi_{n}(x)=A \sin \left(\frac{n \pi}{a} x\right)
$$

Normalization (one particle in the box) requires $\int_{-\infty}^{\infty} d x \psi^{*} \psi=1$.
For $\mathrm{V}(\mathrm{x})=0,0 \leq x \leq a$ infinite wall box:

$$
\begin{aligned}
& 1=\int_{-\infty}^{0} d x \psi * \psi+\int_{0}^{a} d x \psi * \psi+\int_{a}^{\infty} d x \psi * \psi=0+|A|^{2} \int_{0}^{a} d x \sin ^{2} \frac{n \pi}{a} x+0 \\
& 1=|A|^{2} \int_{0}^{a} d x \sin ^{2} \frac{n \pi}{a} x
\end{aligned}
$$

Definite integral

$$
\int_{0}^{\pi} d y \sin ^{2} y=\pi / 2
$$

change variable: $\quad y=\frac{n \pi}{a} x$

$$
d y=\frac{n \pi}{a} d x \Rightarrow d x=\frac{a}{n \pi} d y
$$

limits of integration:

$$
\begin{aligned}
& x=0 \Rightarrow \mathrm{y}=0 \\
& x=a \Rightarrow \mathrm{y}=\mathrm{n} \pi
\end{aligned}
$$

$$
\int_{0}^{a} d x \sin ^{2} \frac{n \pi}{a} x=\int_{0}^{n \pi}\left(\frac{a}{n \pi}\right) d y \sin ^{2} y=\frac{a}{n \pi} n\left(\frac{\pi}{2}\right)=\frac{a}{2}
$$

$$
1=|A|^{2} \frac{a}{2}, \quad \text { thus } A=\left(\frac{2}{a}\right)^{1 / 2}
$$

$$
\psi_{n}(x)=\left(\frac{2}{a}\right)^{1 / 2} \sin \left(\frac{n \pi}{a} x\right)
$$

(A very good equation to remember!)

Find E_{n}. These are all of the allowed energy levels.

$$
\begin{aligned}
& \widehat{H} \psi_{n}=E_{n} \psi_{n} \\
& -\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi_{n}=E_{n} \psi_{n} \\
& +\frac{\hbar^{2}}{2 m} \underbrace{\left(k_{n}\right)^{2}}_{\frac{n^{2} \pi^{2}}{a^{2}}}=E_{n}=\frac{h^{2}}{4 \pi^{2}} \frac{1}{2 m} \frac{n^{2} \pi^{2}}{a^{2}}=n^{2} \underbrace{\left(\frac{h^{2}}{8 m a^{2}}\right)}_{E_{1}}
\end{aligned}
$$

$$
\mathrm{n}=1,2, \ldots
$$

$$
\mathrm{n}=0 \text { would correspond to empty box }
$$

Energy levels are integer multiples of a common factor, $E_{n}=E_{1} n^{2}$. (This will turn out to be of special significance when we look at solutions of the time-dependent Schrödinger equation (Lecture \#13).

All bound systems have their lowest energy level at an energy greater than the energy of the bottom of the well: "zero-point energy"

This zero-point energy is a manifestation of the uncertainty principle. Why? What is the momentum of a state with zero kinetic energy? Is this momentum perfectly specified? What does that require about position?
3. Crude estimates of $\Delta x, \Delta p$ (we will make a more precise definition of uncertainty in the next lecture)
$\Delta x=a$ for all n (the width of the well)

$$
\begin{aligned}
\Delta p_{n}=+\underbrace{+\hbar k_{n}}_{\substack{\vec{p} \text { to } \\
\text { right }}}-\underbrace{\left(-\hbar k_{n}\right)}_{\substack{\vec{p} \text { to } \\
\text { left }}}=2 \hbar\left|k_{n}\right| & =2 \hbar\left(\frac{n \pi}{a}\right) \\
& =\frac{2}{2 \pi} h\left(\frac{n \pi}{a}\right)=h n / a
\end{aligned}
$$

The joint uncertainty is

$$
\Delta x_{n} \Delta p_{n}=(a) \frac{h n}{a}=h n \text { which increases linearly with } n
$$

$n=0$ would imply $\Delta p_{n}=0$ and the uncertainty principle would then require $\Delta x_{n}=\infty$, which is impossible! This is an indirect reason for the existence of zero-point energy.

Since the uncertainty principle is

$$
\Delta x \Delta p_{x}=h
$$

it appears that the $n=1$ state is a minimum uncertainty state. It will be generally true that the lowest energy state in a well is a minimum uncertainty state.
4. Use the 3-D box to illustrate a very convenient general result: separation of variables.

Whenever it is possible to write \widehat{H} in the form:

$$
\begin{gathered}
\widehat{H}=\hat{h}_{x}+\hat{h}_{y}+\hat{h}_{z} \quad \text { (provided that the additive terms are mutually commuting) } \\
\frac{\hat{p}_{x}^{2}}{2 m}+V_{x}(\hat{x})+\text { etc. }
\end{gathered}
$$

it is possible to obtain ψ and E in separated form (which is exceptionally convenient!):

$$
\begin{aligned}
& \psi(x, y, z)=\psi_{x}(x) \psi_{y}(y) \psi_{z}(z) \\
& E=E_{x}+E_{y}+E_{z}
\end{aligned}
$$

Or, more generally, when

$$
\widehat{H}=\sum_{i=1}^{n} \hat{h}_{i}\left(q_{i}\right)
$$

then

$$
\begin{aligned}
\psi & =\prod_{i=1}^{n} \psi_{i}\left(q_{i}\right) \\
E & =\sum_{i=1}^{n} E_{i}
\end{aligned}
$$

Consider the specific example of the 3-D box with edge lengths a, b, and c .
$\mathrm{V}(x, y, z)=0$ $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$, otherwise $\mathrm{V}=\infty$.

This is a special case of $V(x, y, z)=V_{x}+V_{y}+V_{z}$.

$$
\begin{gathered}
T\left(\hat{p}_{x}, \hat{p}_{y}, \hat{p}_{z}\right)=\frac{-\hbar^{2}}{2 m} \underbrace{\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right]}_{\nabla^{2} \text { "Laplacian" }} \\
\widehat{H}(x, y, z)=\left[\frac{-\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V_{x}(\hat{x})\right]+\left[\frac{-\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial y^{2}}+V_{y}(\hat{y})\right]+\left[\frac{-\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial z^{2}}+V_{z}(\hat{z})\right] \\
=\hat{h}_{x}+\hat{h}_{y}+\hat{h}_{z}
\end{gathered}
$$

Schrödinger Equation

$$
\left[\hat{h}_{x}+\hat{h}_{y}+\hat{h}_{z}\right] \psi(x, y, z)=E \psi(x, y, z)
$$

$\operatorname{try} \psi(x, y, z)=\psi_{x}(x) \psi_{y}(y) \psi_{z}(z)$,
where \hat{h}_{i} operates only on ψ_{i},
and $\hat{h}_{i} \psi_{i}=E_{i} \psi_{i}$ are the solutions of the 1-D problem.
$\hat{h}_{x} \psi(x, y, z)=\psi_{y} \psi_{z} \hat{h}_{x} \psi_{x}=\psi_{y} \psi_{z} E_{x} \psi_{x}=E_{x} \psi_{x} \psi_{y} \psi_{z}=E_{x} \psi(x, y, z)$
\triangle (does not operate on y, z)
$\hat{h}_{y} \psi=E_{y} \psi_{x} \psi_{y} \psi_{z}$
$\hat{h}_{z} \psi=E_{z} \psi_{x} \psi_{y} \psi_{z}$
$\hat{h}_{x} \psi+\hat{h}_{y} \psi+\hat{h}_{z} \psi=\widehat{H} \psi=\left(E_{x}+E_{y}+E_{z}\right) \psi$.
So we have shown that, if \widehat{H} is separable into additive (commuting) terms, then ψ can be written as a product of independent factors, and E will be a sum of separate subsystem energies. Convenient!

So, for the a, b, c box

$$
\begin{gathered}
\psi_{n_{x}}=(2 / a)^{1 / 2} \sin \frac{n_{x} \pi x}{a}, \quad E_{n_{x}}=n_{x}^{2} \frac{h^{2}}{8 m a^{2}} \\
\int_{0}^{a} d x \psi_{n x}^{2}=1 \\
\psi_{n_{y}}=(2 / b)^{1 / 2} \sin \frac{n_{y} \pi}{b}, \text { normalized }, E_{n_{y}}=n_{y}^{2} \frac{h^{2}}{8 m b^{2}} \\
\psi_{n_{z}}=(2 / c)^{1 / 2} \sin \frac{n_{z} \pi}{c}, \text { normalized }, E_{n_{z}}=n_{z}^{2} \frac{h^{2}}{8 m c^{2}} \\
E_{n_{x}, n_{y}, n_{z}}=\frac{h^{2}}{8 m}\left[\frac{n_{x}^{2}}{a^{2}}+\frac{n_{y}^{2}}{b^{2}}+\frac{n_{z}^{2}}{c^{2}}\right] \\
\psi_{n_{x} n_{y} n_{z}}=\left(\frac{8}{a b c}\right)^{1 / 2} \sin \frac{n_{x} \pi x}{a} \sin \frac{n_{y} \pi y}{b} \sin \frac{n_{z} \pi z}{c} .
\end{gathered}
$$

If each of the factors of $\Psi_{n_{x}, n_{y}, n_{z}}$ is normalized, it's easy to show that

$$
\int d x d y d z\left|\psi_{n_{x} n_{y} n_{z}}\right|^{2}=1
$$

because each of the integrations acts on only one separable factor.
This looks like a lot of algebra, but it really is an important, convenient, and frequently encountered simplification.

We use this separable form for ψ and E all of the time, even when \widehat{H} is not exactly separable (for example, a box with slightly rounded corners).
a separable Hamiltonian that we use to define a complete a correction term that set of "basis functions" and
 contains what we would like to leave out. "zero-order energies."

This is the basis for our intuition, names of things, and approximate energy level formulas.
$\widehat{H}^{(1)}$ contains small inter-sub-system coupling terms that are dealt with by perturbation theory (Lectures \#15, \#16 and \#19).

You should look at some properties of a particle in a box. Some of these properties are based on simple insights, while others are based on actually evaluating the necessary integrals.
$\langle x\rangle$
$\left\langle x^{2}\right\rangle$
$\sigma_{x}^{2}=\left\langle x^{2}\right\rangle-\langle x\rangle^{2} \quad$ "variance"
$\left\langle p_{x}\right\rangle$
$\left\langle p_{x}^{2}\right\rangle$
$\sigma_{p_{x}}$
$\sigma_{x} \sigma_{p_{x}}$
FWHM
Gaussian $\quad G\left(x-x_{0}, \sigma_{x}\right) \quad\left[x_{0}\right.$ is "center", σ_{x} is "width"]
Lorentzian $L\left(x-x_{0}, \sigma_{x}\right)$
Minimum Uncertainty Wavepacket

MIT OpenCourseWare
https://ocw.mit.edu/

5.61 Physical Chemistry

Fall 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

