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Lecture #6:  3-D Box and Separation of Variables 
 

Last time: 
 
Build up to Schrödinger Equation: some wonderful surprises 
 

* operators 
* eigenvalue equations 

* operators in quantum mechanics – especially 
 
x̂ = x and p̂x = −i ∂

∂x
 

* non-commutation of x̂  and p̂x :  related to uncertainty principle 
* wavefunctions:  probability amplitude, continuous! therefore no perfect 

localization at a point in space 
* expectation value (and normalization) 

 

 H
ψ = Eψ  
 * Free Particle 
 * Particle in 1-D Box (first viewing) 

 
Today:  
 
1. Review of Free Particle 
 some simple integrals 
 
2. Review of Particle in 1-D “Infinite” Box 
 boundary conditions  
 pictures of ψn(x), Memorable Qualitative features 
 
3. Crude uncertainties, ∆x and ∆p, for Particle in Box 
 
4. 3-D Box 
 separation of variables 
 Form of Enx ,ny ,nz

 and ψ nx ,ny ,nz
 

 
 
 1. Review of Free particle: V(x) = V0 
 

ψ k (x) = ae
+ ikx + be− ikx  complex oscillatory (because E > V0) 

 

 
Ek =

k( )2
2m

+V0  k is not quantized 
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ψ k (x)
2

−∞

∞

∫ dx = a 2 + b 2⎡⎣−∞

∞

∫ + a*be−2ikx + ab*e2ikx ⎤⎦dx

= a 2∞ + b 2∞ + a*b0 + ab*0
 

 
can’t normalize ψ = aeikx to 1. 

 
dx

−∞

∞

∫ a 2 e− ikxe+ ikx = dx
−∞

≈

∫ a 2  
which blows up.  Instead, normalize to specified # of particles between x1 and x2. 

 

Questions: Is ψ k (x) = ae
ikx + be− ikx  an eigenfunction of p̂x ?   px

2
?  What do your answers mean? 

  Is eikx eigenfunction of p̂x ?  What eigenvalue? 
 

2. Review of Particle in 1-D Box of length a, with infinitely high walls 
 

“infinite box” or “PIB” 
 
In view of its importance in starting you out thinking about quantum mechanical particle in a 
well problems, I will work through this problem again, carefully. 
 

 0 a

E
Classically
forbidden
because
E < V

Classically
forbidden

V(x) = 0
V(x) = !

Region I Region II Region III

0 ! x ! a
x < 0, x > a

 
Consider regions I and III. 
E < V(x) 
 

x 

(Note what happens to 
the product e–ikxe+ikx) 
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H = − 
2

2m
d 2

dx2 +∞

2

2m
d 2ψ
dx2

finite
 

= ∞− E( )ψ
no matter what finite 
value we choose for 
E , the Schrödinger 
equation can only be
satisfied by setting 
ψ (x ) = 0  
throughout regions
 I and III.

 

 

 
So we know that ψ(x) = 0 x < 0, x > a. 
 
But ψ(x) must be continuous everywhere, thus ψ(0) = ψ(a) = 0. 
 These are boundary conditions. 
 
Note, however, that for finite barrier height and width, we will eventually see that it is 
possible for ψ(x) to be nonzero in a classically forbidden [E < V(x)] region. 
“Tunneling.”  (There will be a problem on Problem Set #3 about this.) 
 
So we solve for ψ(x) in Region II, which looks exactly like the free particle because V(x) = 0 
in Region II.  Free particle solution are written in sin, cos form rather than e±ikx form, because 
application of boundary conditions is simpler.  [This is an example of finding a general 
principle and then trying to find a way to violate it.] 
 

ψ (x) = Asin kx + Bcoskx
Apply boundary conditions

ψ (0) = 0 = 0 + B→ B = 0

ψ (a) = 0 = Asin ka⇒ ka = nπ , kn =
nπ
a

 

Normalize: 1= dx
−∞

∞

∫ ψ *ψ = A2 dx
0

a

∫ sin2 nπ x
a

→ A = 2
a

⎛
⎝⎜

⎞
⎠⎟
1/2

  (Picture of normalization 

integrand suggests that the value of the normalization integral = a/2) 
 

Non-Lecture 
Normalization integral for particle-in-a-box eigenfunctions 
 



5.61 Fall 2017 Lecture #6 page 4 
 

revised 9/18/17 9:52 AM 

 ψ n (x) = Asin
nπ
a
x⎛

⎝⎜
⎞
⎠⎟  

Normalization (one particle in the box) requires dx
−∞

∞

∫ ψ *ψ = 1 . 
 
For V(x) = 0, 0 ≤ x ≤ a infinite wall box: 
 

1= dx
−∞

0

∫ ψ *ψ + dx
0

a

∫ ψ *ψ + dx
a

∞

∫ ψ *ψ = 0 + A 2 dx
0

a

∫ sin2 nπ
a
x + 0

1= A 2 dx
0

a

∫ sin2 nπ
a
x

 

 
Definite integral 
 
 dy

0

π

∫ sin2 y = π 2  
 
 
change variable: y = nπ

a
x

dy = nπ
a
dx⇒ dx = a

nπ
dy

 

 
limits of integration: 
 
 x = 0 ⇒ y = 0 
 x = a ⇒ y = nπ 
 

dx
0

a

∫ sin2 nπ
a
x = a

nπ
⎛
⎝⎜

⎞
⎠⎟0

nπ

∫ dysin2 y = a
nπ

n π
2

⎛
⎝⎜

⎞
⎠⎟ =

a
2  

 

1= A 2 a
2

, thus A = 2
a

⎛
⎝⎜

⎞
⎠⎟

1/2

ψ n (x) = 2
a

⎛
⎝⎜

⎞
⎠⎟

1/2

sin nπ
a
x⎛

⎝⎜
⎞
⎠⎟

 (A very good equation to remember!) 

End of Non-Lecture 
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Find En.  These are all of the allowed energy levels. 
 

 

Hψ n = Enψ n

− 
2

2m
d 2

dx2
ψ n = Enψ n

+ 
2

2m
(kn )

2

n2π 2

a2

 
= En =

h2

4π 2
1
2m

n2π 2

a2
= n2 h2

8ma2
⎛
⎝⎜

⎞
⎠⎟

E1
 

 

 n = 1, 2, … 
 n = 0 would correspond to empty box 
 
Energy levels are integer multiples of a common factor, En = E1n2.  (This will turn out to be 
of special significance when we look at solutions of the time-dependent Schrödinger 
equation (Lecture #13). 
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⇥ � width in k (could be 2� max/e point
or 2� max/2 point or �k)

⇥(x) =
�

dk f(k)eikx, k = p/}
superposition of free particle states

 

 
 
 
These are “stationary states”.  You are not 
allowed to ask, if the system is in ψ3, how 
does the particle get from one side of a 
node to the other. 
 
 
How would you sample ψ3?  What would 
you measure?  [Quantum Mechanics is full 
of what/how is “in principle” measurable, 
hence knowable.] 
 
Could you measure ψ3? 
 
Could you measure |ψ3|2? 
 

 
All bound systems have their lowest energy level at an energy greater than the energy of the 
bottom of the well:  “zero-point energy” 
 
This zero-point energy is a manifestation of the uncertainty principle.  Why?  What is the 
momentum of a state with zero kinetic energy?  Is this momentum perfectly specified?  What 
does that require about position? 
 

zero point E 
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3. Crude estimates of ∆x, ∆p (we will make a more precise definition of uncertainty in 
the next lecture) 
 
∆x = a for all n (the width of the well) 
 

 

∆ pn = +kn
p  to 
right

 
− −kn( )

p  to 
left

 
= 2 kn = 2 nπ

a
⎛
⎝⎜

⎞
⎠⎟

= 2
2π

h nπ
a

⎛
⎝⎜

⎞
⎠⎟ = hn a

 

The joint uncertainty is 

∆ xn∆ pn = (a) hn
a

= hnwhich increases linearly with n.  

 
n = 0 would imply ∆pn = 0 and the uncertainty principle would then require ∆xn = ∞, which is 
impossible!  This is an indirect reason for the existence of zero-point energy. 
 
Since the uncertainty principle is 
 

∆x∆px = h 
 
it appears that the n = 1 state is a minimum uncertainty state.  It will be generally true that 
the lowest energy state in a well is a minimum uncertainty state. 
 
4. Use the 3-D box to illustrate a very convenient general result:  separation of 
variables. 
 
Whenever it is possible to write  H  in the form: 
 
H = ĥx + ĥy + ĥz (provided that the additive terms are mutually commuting)

p̂x
2

2m
+Vx (x̂)+ etc.

 

 
it is possible to obtain ψ and E in separated form (which is exceptionally convenient!): 
 

ψ x, y, z( ) =ψ x (x)ψ y(y)ψ z (z)

E = Ex + Ey + Ez .
 

 
Or, more generally, when 
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H = ĥi

i=1

n

∑ (qi )  

then 
 

ψ = ψ i
i=1

n

∏ (qi )

E = Ei
i=1

n

∑
 

 
Consider the specific example of the 3-D box with edge lengths a, b, and c. 
 
V(x,y,z) = 0  0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c, otherwise V = ∞. 
 
This is a special case of V x, y, z( ) =Vx +Vy +Vz . 
 

 

T p̂x , p̂y , p̂z( ) = −2

2m
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

⎡

⎣
⎢

⎤

⎦
⎥

∇2  “Laplacian”
 

 

 

 

H x, y, z( ) = −2

2m
∂2

∂x2
+Vx (x̂)

⎡

⎣
⎢

⎤

⎦
⎥ +

−2

2m
∂2

∂y2
+Vy(ŷ)

⎡

⎣
⎢

⎤

⎦
⎥ +

−2

2m
∂2

∂z2
+Vz (ẑ)

⎡

⎣
⎢

⎤

⎦
⎥

= ĥx + ĥy + ĥz

 

Schrödinger Equation 
 

ĥx + ĥy + ĥz⎡⎣ ⎤⎦ψ (x, y, z) = Eψ (x, y, z)

try ψ (x, y, z) =ψ x (x)ψ y(y)ψ z (z),

where ĥi  operates only on ψ i ,

 and ĥiψ i = Eiψ i  are the solutions of the 1-D problem.

 

 

 

ĥxψ x, y, z( ) =ψ yψ zĥxψ x =ψ yψ zExψ x = Exψ xψ yψ z = Exψ x, y, z( )
(does not operate on y, z)

ĥyψ = Eyψ xψ yψ z

ĥzψ = Ezψ xψ yψ z

ĥxψ + ĥyψ + ĥzψ = Hψ = Ex + Ey + Ez( )ψ .

 

 

So we have shown that, if  H  is separable into additive (commuting) terms, then ψ can be 
written as a product of independent factors, and E will be a sum of separate subsystem 
energies.  Convenient! 
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So, for the a,b,c box 
 

 
ψnx

= 2 a( )1/2 sin nxπ x
a

, Enx
= nx

2 h2

8ma2

dx
0

a
∫ ψnx

2 =1
 

 

ψny
= 2 b( )1/2 sin

nyπ
b

, normalized, Eny
= ny

2 h2

8mb2

ψnz
= 2 c( )1/2 sin nzπ

c
, normalized, Enz

= nz
2 h2

8mc2

Enx ,ny ,nz
=
h2

8m
nx

2

a2 +
ny

2

b2 +
nz

2

c2

⎡

⎣
⎢

⎤

⎦
⎥

ψnxnynz
=

8
abc
⎛

⎝
⎜

⎞

⎠
⎟

1/2

sin nxπ x
a

sin
nyπ y
b

sin nzπ z
c

.

 

 
If each of the factors of ψ nx ,ny ,nz

 is normalized, it’s easy to show that 
 

dxdydz∫ ψ nxnynz

2
= 1

 
 
because each of the integrations acts on only one separable factor. 
 
This looks like a lot of algebra, but it really is an important, convenient, and frequently 
encountered simplification. 
 
We use this separable form for ψ and E all of the time, even when  H  is not exactly separable 
(for example, a box with slightly rounded corners). 
 
 

 H
 = H (0)+ H

(1)

 

 

a separable Hamiltonian that 
we use to define a complete 
set of “basis functions” and 
“zero-order energies.” 

 a correction term that 
contains what we would like 
to leave out. 
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This is the basis for our intuition, names of things, and approximate energy level formulas. 

H
(1)

 contains small inter-sub-system coupling terms that are dealt with by perturbation
theory (Lectures #15, #16 and #19). 

You should look at some properties of a particle in a box.  Some of these properties are based 
on simple insights, while others are based on actually evaluating the necessary integrals. 

x

x2

σ x
2 = x2 − x 2 “variance”

px
px

2

σ px

σ xσ px

FWHM
Gaussian G(x − x0,σ x ) x0  is “center”, σ x  is “width”[ ]
Lorentzian L(x − x0,σ x )
Minimum Uncertainty Wavepacket
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