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Lecture #7:  Classical Mechanical Harmonic Oscillator 
 
Last time 
 
What was surprising about Quantum Mechanics? 
 
Free particle (almost an exact reprise of 1D Wave Equation) 
 

Can't be normalized to 1 over all space! Instead: Normalization to one particle between x1 
and x2.  What do we mean by “square integrable?” 
 

hp̂i = |a|2 � |b|2

|a|2 + |b|2  

What free particle ψ(x) has this expectation value? 
What does this mean in a click-click experiment? 

 
Motion not present, but ψ is encoded for it. 
Node spacing:  λ/2   (generalize this to get "semiclassical”) 

Semiclassical: λ(x) = h
p(x)

, pclassical (x) = 2m E −V (x)( )⎡⎣ ⎤⎦
1/2   

 
Particle in Infinite Box 
 

En =
h2

8ma2
n2 ψn (x) =

2
a

⎛
⎝⎜

⎞
⎠⎟
1/2

sin nπ
a
x⎛

⎝⎜
⎞
⎠⎟   

nodes, zero-point energy 
change:  a, V0, location of left edge 
importance of pictures 
 
3D box 

 

H = ĥx + ĥy + ĥz commuting operators( )
Enxnynz = Enx + Eny + Enz
ψnxnynz

= ψnx
(x)ψny

(y)ψnz
(z)
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Today (and next 3+ lectures) Harmonic Oscillator 
 

1) Classical Mechanics (“normal modes” of vibration in polyatomic molecules arise from 
classical mechanics). Preparation for Quantum Mechanical treatment. 

2) Quantum mechanical brute force treatment — Hermite Polynomials 
3) Elegant treatment with memorable selection rules: “creation/annihilation” operators. 
4) Non-stationary states (i.e. moving) of Quantum Mechanical Harmonic Oscillator: 

wavepackets, dephasing and recurrence, and tunneling through a barrier. 
5) Perturbation Theory. 

 
Harmonic Oscillator 
 
We have several kinds of potential energy functions in atoms and molecules. 
 
 
 

V (r) = − 1
r

H atom

 

 
 
 
 
 
 
 

En ∝− 1
n2

 

0 L  

 
 
En ∝ n2 
 
 
particle in infinite-wall finite-length box 
(also particle on a ring) 

Level pattern tells us qualitatively what kind of system we have.   
Level splittings tell us quantitatively  what are the properties of the class of system we have. 
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Rigid rotor  En ∝ n n +1( )  
Harmonic Oscillator 

 x0  

 

V (x) = 1
2
kx2 En ∝ n +1/ 2( )  

The pattern of energy levels tells us which underlying microscopic structure we are dealing with. 
 
Typical interatomic potential energy: 

Z
dx ⇤

i
bA j|{z}
aj j

=

Z
dx j

bA⇤ ⇤
i| {z }

a⇤i 
⇤
i

�
�

a

⇤
i = ai because b

A

corresponds to a
classically
observable quantity

6
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6
Bond-Breaking
Soft outer wall

looks like V (R) = k
2 (R�Re)2

harmonic near the bottom of the well

Re
 

We will use x rather than R here. 
 
Expand any potential energy function as a power series: 
 

X − X0 ≡ x

V (x) =V (0)+ dV
dx x=0

x + d
2V
dx2 x=0

x2

2
+ d

3V
dx2

x3

6
 

For small x, OK to ignore terms of higher order than x2.  [What do we know about dV
dx

 at the 

minimum of any V(x)?] 
For example, Morse Potential 
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V (x) = De 1− e−ax[ ]2 = De 1− 2e−ax + e−2ax[ ]

=V (0)+ 0 + a2Dex
2 − a3Dex

3 + 7
12
a4Dex

4 +…  

 
 
V(∞) = De (dissociation energy), V(0) = 0. 
If ax ! 1, V(x) ≈ V(0)+(Dea2)x2.  A very good starting point for the molecular vibrational 
potential energy curve. 
 
Call Dea2 = k/2.  Ignore the x3 and x4 terms. 
 
Let’s first focus on a simple harmonic oscillator in classical mechanics. 
 

 
 
Hooke’s Law 
 

 

F = −k X − X0( )
force is — gradient
of potential

 
 When X > X0  

Force pushes mass back down toward X0 

F = − dV
dX

∴ V (x) = 1
2
k X − X0( )2

 

When X < X0  
Force pulls mass back up toward X0 

  

why physically is there no linear in x term? 

1− ax + a
2x2

2
+…

⎛
⎝⎜

⎞
⎠⎟  

1− 2ax + 4a
2x2

2
+…

⎛
⎝⎜

⎞
⎠⎟  

some algebra 
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Newton’s equation: 

F = ma = m
d 2 X − X0( )

dt 2
= −k X − X0( )  

x ≡ X − X0

substitute and rearrange
 

 

d2x
dt 2

= − k
m
x  

2nd order ordinary linear differential equation:  solution 
contains two linearly independent terms, each 
multiplied by one of 2 constants to be determined 

 

x(t) = Asin k
m

⎛
⎝⎜

⎞
⎠⎟
1/2

t + Bcos k
m

⎛
⎝⎜

⎞
⎠⎟
1/2

t  

It is customary to write 
 

 k
m

⎛
⎝⎜

⎞
⎠⎟
1/2

= ω . 
 
(ω is conventionally used to specify an angular frequency:  
 radians/second) 

 
Why? 
 
What is frequency of oscillation?  τ is period of oscillation. 

x t + τ( ) = x(t) = Asin k
m

⎛
⎝⎜

⎞
⎠⎟
1/2

t
⎡

⎣
⎢

⎤

⎦
⎥ + Bcos

k
m

⎛
⎝⎜

⎞
⎠⎟
1/2

t
⎡

⎣
⎢

⎤

⎦
⎥ = Asin

k
m

⎛
⎝⎜

⎞
⎠⎟
1/2

t + τ( )
⎡

⎣
⎢

⎤

⎦
⎥ + Bcos

k
m

⎛
⎝⎜

⎞
⎠⎟
1/2

t + τ( )
⎡

⎣
⎢

⎤

⎦
⎥  

requires 

  k
m

⎛
⎝⎜

⎞
⎠⎟
1/2

τ = 2π τ = 2π
ω

= 2π
2πν

= 1
ν

 as required. 

 

 

ν = 1
τ

period


  

How long does one full oscillation take? 

we have sin, cos functions of k
m

⎛
⎝⎜

⎞
⎠⎟
1/2

t = ωt  

when the argument of sin or cos goes from 0 to 2π, we have one period of oscillation. 

2π = k
m

⎛
⎝⎜

⎞
⎠⎟
1/2

τ = ωτ

τ = 2π
ω

= 1
ν
.

 

 
So everything makes sense. 
 
ω is “angular frequency” radians/sec. 
v is ordinary frequency cycles/sec. 
τ is period   sec 
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x(t) = A sin ωt + B cos ωt 
 
Need to get A,B from initial conditions: 
 

0
x+(E)x–(E)

V(x)

E –

 

 
 
 
 

 

[e.g. starting at a turning point
ASK!  

 where E =V (x± ) = (1 / 2)kx±
2 ]

⇓

± 2E
k

⎛
⎝⎜

⎞
⎠⎟

1/2

= x±

 

 
 
Initial amplitude of oscillation depends on the strength of the pluck! 
 
If we start at x+ at t = 0 (the sine term is zero at t = 0, the cosine term is B at t = 0) 

x 0( ) = 2E
k

⎛
⎝⎜

⎞
⎠⎟
1/2

⇒ B = 2E
k

⎛
⎝⎜

⎞
⎠⎟
1/2

 

 
 
Note that the frequency of oscillation does not depend on the initial amplitude.  To get A for 
initial condition x(0) = x+, look at t = τ/4, where x(τ/4) = 0.  Find A = 0. 
 
Alternatively, we can use frequency, phase form.  For x(0) = x+ initial condition: 

 

x(t) = C sin k
m

⎛
⎝⎜

⎞
⎠⎟

1/2

t + φ
⎛

⎝⎜
⎞

⎠⎟

if x(0) = x+ =
2E
k

⎛
⎝⎜

⎞
⎠⎟

1/2

C = 2E
k

⎛
⎝⎜

⎞
⎠⎟

1/2

,φ = −π / 2

 

We are done.  Now explore Quantum Mechanics - relevant stuff. 
What is: Oscillation Frequency 
  Kinetic Energy T(t), T  
  Potential Energy, V(t), V  
  Period τ? 
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Oscillation Frequency:  ν = ω
2π

 independent of E 

 

Kinetic Energy: T (t) = 1
2
mv(t)2  

 

x(t) = 2E
k

⎡
⎣⎢

⎤
⎦⎥

1/2

sin ωt + φ[ ]

v(t) = ω 2E
k

⎡
⎣⎢

⎤
⎦⎥

1/2

cos ωt + φ[ ]

T (t) = 1
2
mω2

k /m


2E
k

⎡
⎣⎢

⎤
⎦⎥
cos2 ωt + φ[ ]

= E cos2 ωt + φ( )

 

Now some time averaged quantities: 

T = T = E
dt

0

τ

∫ cos2 ωt + φ( )
τ

recall τ = 2π
ω

= E / 2

V (t) = 1
2
kx2 = k

2
2E
k

⎛
⎝⎜

⎞
⎠⎟ sin2 ωt + φ( )

= E sin2 ωt + φ( )
E = T (t)+V (t) = T +V
V = E / 2

 

 
 
 
 
Calculate 〈V〉 by dt

0

τ

∫  or by simple 
algebra, below 

 
 
 

Really neat that T =V = E / 2 . 

Energy is being exchanged between T and V.  They oscillate π/2 out of phase:  V (t) = T t − τ
4

⎛
⎝⎜

⎞
⎠⎟  

V lags T. 
 
What about x(t) and p(t) when x is near the turning point? 
 

x t( ) = 2E
k

⎡
⎣⎢

⎤
⎦⎥

1/2

cosωt  

x(t = 0) = x+ 

take derivative of x(t) with respect to t 
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τ
t

x+

x

 

x changing slowly near x turning point 

τ/4 t

0

p

τ/2  

p changing fastest near x turning point 

 
Insights for wavepacket dynamics.  We will see (in Lecture #11) that “survival probability” 
Ψ*(x,t)Ψ(x,0)

2
  

 decays near t.p. mostly because of p̂  rather than x̂ . 
 
What about time-averages of x, x2, p, p2? 
 
x = 0
p = 0

⎫
⎬
⎭⎪

 is the HO potential moving in space?  

 
x2 =V (x) k / 2( )  
take t-average 

x2 = 2
k
V (x) = 2

k
E
2
= E / k  

 
p2 = 2mT 
 

p2 = 2m E
2
= mE  



5.61 Fall, 2017 Lecture #7 Page 9 

  revised 9/19/17 1:50 PM 

 

∆ x = x2 − x 2 1/2
= E / k( )1/2

∆ p = p2 − p 2 1/2
= mE( )1/2

 

 

∆ x∆ p = E m
k

⎛
⎝⎜

⎞
⎠⎟
1/2

= E /ω .  small at low E 

 
We will see an uncertainty relationship between x and p in Quantum Mechanics. 
 
Probability of finding oscillator between x and x + dx: consider one half period, oscillator going 
from left to right turning point. 

P(x)dx =
time x, x + dx( )

τ / 2
=

distance
velocity
1
2

2π
ω

⎛
⎝⎜

⎞
⎠⎟

=

dx
v(x)
2π
2ω

= 2ω
v(x)2π

dx v(x) small at x = x ±( )

 

x- x+

P(x)

 
large probability at turning points.  Goes to ∞ at x±. 
 
minimum probability at x = 0 
 
In Quantum Mechanics, we will see that P(x±) does not blow up and also that there is some 
probability outside the classically allowed region.  Tunneling. 
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Non-Lecture 

 
Next we want to go from one mass on an anchored spring to two masses connected by a spring. 

 

 
 
F = ma for each mass 
 

 

m1
d 2x1
dt 2

= k x2 − x1 − 0( )

m2
d 2x2
dt 2

= −k x2 − x1 − 0( )

 

 
2 coupled differential equations. 
 
 
Uncouple them easily, as follows: 
 
Add the 2 equations 

 

 

m1
d 2x1

dt 2 +m2
d 2x2

dt 2 = d 2

dt 2 m1x1 +m2x2( )
we will see that
this is at worst 
proportional to t

 
= 0  

 
Define a center of mass coordinate. 

 

length of spring at rest, 
i.e. when x2 – x1 = "0 
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m1x1 +m2x2

M
= X M = m1 +m2

replace m1x1 +m2x2  by MX

M d 2X
dt 2 = 0

integrate once with respect to t
dX
dt

(t) = const.

 

The center of mass is moving at constant velocity — no force acting. 
 
Next find a new differential equation expressed in terms of the relative coordinate 

 
x = x2 – x1 – "0. 

 
Divide the first differential equation (located at the top of page 10) by m1, the second by m2, and 
subtract the first from the second: 

 

d 2x2
dt 2

− d
2x1
dt 2

= − k
m2

x2 − x1 − 0( )− k
m1

x2 − x1 − 0( )

d 2

dt 2
x2 − x1( ) = −k

1
m2

+ 1
m1

⎛
⎝⎜

⎞
⎠⎟
x2 − x1 − 0( )

= −k
m1 +m2

m1m2

⎛
⎝⎜

⎞
⎠⎟
x2 − x1 − 0( )

 

 

 

µ ≡ m1m2

m1 +m2

d 2

dt 2 x2 − x1( )
x+0

 
= − k

µ
x2 − x1 − 0( ) = − k

µ
x

x  is displacement 
from equilibrium

   

 
We get a familiar looking equation for the intramolecular displacement from equilibrium. 
 

µd
2x
dt 2

+ kx = 0  

 
Everything is the same as the one-mass-on-an-anchored-spring problem except m → µ. 
 

killed by 
derivative 
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Next time: Quantum Mechanical Harmonic Oscillator 
 

 
H = p̂2

2µ
+ 1
2
kx̂2  

 
 note that this differential operator does not have time in it! 
 
We will see particle-like motion for harmonic oscillator when we consider the Time Dependent 
Schrödinger equation (Lecture #10) and Ψ(x,t) is constructed to be a particle-like state. 

Ψ(x,t) where Ψ(x,0) = cv
v=0

∞

∑ ψ v  

in the 4th lecture on Harmonic Oscillators (Lecture #11). 



MIT OpenCourseWare 
https://ocw.mit.edu/ 

5.61 Physical Chemistry 
Fall 2017 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu/
https://ocw.mit.edu/terms



