Lecture \#7: Classical Mechanical Harmonic Oscillator

Last time
What was surprising about Quantum Mechanics?
Free particle (almost an exact reprise of 1D Wave Equation)
Can't be normalized to 1 over all space! Instead: Normalization to one particle between x_{1} and x_{2}. What do we mean by "square integrable?"
$\langle\hat{p}\rangle=\frac{|a|^{2}-|b|^{2}}{|a|^{2}+|b|^{2}} \quad$ What free particle $\psi(x)$ has this expectation value?
Motion not present, but ψ is encoded for it.
Node spacing: $\lambda / 2$ (generalize this to get "semiclassical")
Semiclassical: $\lambda(x)=\frac{h}{p(x)}, \quad p_{\text {classical }}(x)=[2 m(E-V(x))]^{1 / 2}$
Particle in Infinite Box

$$
E_{n}=\frac{h^{2}}{8 m a^{2}} n^{2} \quad \psi_{n}(x)=\left(\frac{2}{a}\right)^{1 / 2} \sin \left(\frac{n \pi}{a} x\right)
$$

nodes, zero-point energy
change: a, V_{0}, location of left edge
importance of pictures
3D box

$$
\begin{aligned}
& \widehat{H}=\hat{h}_{x}+\hat{h}_{y}+\hat{h}_{z} \quad \text { (commuting operators) } \\
& E_{n_{x} n_{y} n_{z}}=E_{n_{x}}+E_{n_{y}}+E_{n_{z}} \\
& \Psi_{n_{x} n_{y} n_{z}}=\psi_{n_{x}}(x) \psi_{n_{y}}(y) \psi_{n_{z}}(z)
\end{aligned}
$$

Today (and next 3+ lectures) Harmonic Oscillator

1) Classical Mechanics ("normal modes" of vibration in polyatomic molecules arise from classical mechanics). Preparation for Quantum Mechanical treatment.
2) Quantum mechanical brute force treatment - Hermite Polynomials
3) Elegant treatment with memorable selection rules: "creation/annihilation" operators.
4) Non-stationary states (i.e. moving) of Quantum Mechanical Harmonic Oscillator: wavepackets, dephasing and recurrence, and tunneling through a barrier.
5) Perturbation Theory.

Harmonic Oscillator
We have several kinds of potential energy functions in atoms and molecules.

$$
\mathrm{H} \text { atom } \quad E_{n} \propto-\frac{1}{n^{2}}
$$

Level pattern tells us qualitatively what kind of system we have.
Level splittings tell us quantitatively what are the properties of the class of system we have.

Rigid rotor

Harmonic Oscillator

$$
E_{n} \propto n(n+1)
$$

$$
V(x)=\frac{1}{2} k x^{2}
$$

$$
E_{n} \propto(n+1 / 2)
$$

The pattern of energy levels tells us which underlying microscopic structure we are dealing with.
Typical interatomic potential energy:

We will use x rather than R here.
Expand any potential energy function as a power series:

$$
\begin{aligned}
& X-X_{0} \equiv x \\
& V(x)=V(0)+\left.\frac{d V}{d x}\right|_{x=0} x+\left.\frac{d^{2} V}{d x^{2}}\right|_{x=0} \frac{x^{2}}{2}+\frac{d^{3} V}{d x^{2}} \frac{x^{3}}{6}
\end{aligned}
$$

For small x, OK to ignore terms of higher order than x^{2}. [What do we know about $\frac{d V}{d x}$ at the minimum of any $V(x)$?]
For example, Morse Potential

Call $D_{e} a^{2}=k / 2$. Ignore the x^{3} and x^{4} terms.
Let's first focus on a simple harmonic oscillator in classical mechanics.

Hooke's Law
$F=\underset{\substack{\text { torpe is }- \text { gradient } \\ \text { of potential }}}{-k\left(X-X_{0}\right)}$
$F=-\frac{d V}{d X}$
$\therefore V(x)=\frac{1}{2} k\left(X-X_{0}\right)^{2}$

When $\mathrm{X}>\mathrm{X}_{0}$
Force pushes mass back down toward X_{0}
When $\mathrm{X}<\mathrm{X}_{0}$
Force pulls mass back up toward X_{0}

Newton's equation:
$F=m a=m \frac{d^{2}\left(X-X_{0}\right)}{d t^{2}}=-k\left(X-X_{0}\right)$
$x \equiv X-X_{0}$
substitute and rearrange
$\frac{\mathrm{d}^{2} x}{d t^{2}}=-\frac{k}{m} x$
$2^{\text {nd }}$ order ordinary linear differential equation: solution contains two linearly independent terms, each multiplied by one of 2 constants to be determined

$$
x(t)=A \sin \left(\frac{k}{m}\right)^{1 / 2} t+B \cos \left(\frac{k}{m}\right)^{1 / 2} t
$$

It is customary to write

$$
\left(\frac{k}{m}\right)^{1 / 2}=\omega . \quad(\omega \text { is conventionally used to specify an angular frequency: }
$$

Why?
What is frequency of oscillation? τ is period of oscillation.
$x(t+\tau)=x(t)=A \sin \left[\left(\frac{k}{m}\right)^{1 / 2} t\right]+B \cos \left[\left(\frac{k}{m}\right)^{1 / 2} t\right]=A \sin \left[\left(\frac{k}{m}\right)^{1 / 2}(t+\tau)\right]+B \cos \left[\left(\frac{k}{m}\right)^{1 / 2}(t+\tau)\right]$
requires

$$
\begin{aligned}
& \left(\frac{k}{m}\right)^{1 / 2} \tau=2 \pi \quad \tau=\frac{2 \pi}{\omega}=\frac{2 \pi}{2 \pi v}=\frac{1}{v} \text { as required. } \\
& v=\frac{1}{\substack{\tau \\
\text { period }}}
\end{aligned}
$$

How long does one full oscillation take?
we have sin, cos functions of $\left(\frac{k}{m}\right)^{1 / 2} t=\omega t$
when the argument of \sin or cos goes from 0 to 2π, we have one period of oscillation.

$$
\begin{aligned}
& 2 \pi=\left(\frac{k}{m}\right)^{1 / 2} \tau=\omega \tau \\
& \tau=\frac{2 \pi}{\omega}=\frac{1}{v}
\end{aligned}
$$

So everything makes sense.
ω is "angular frequency" v is ordinary frequency τ is period
radians/sec.
cycles/sec.
sec
$\mathrm{x}(\mathrm{t})=\mathrm{A} \sin \omega \mathrm{t}+\mathrm{B} \cos \omega \mathrm{t}$
Need to get A,B from initial conditions:

ASK!
[e.g. starting at a turning point where $E=V\left(x_{ \pm}\right)=(1 / 2) k x_{ \pm}^{2}$]
\Downarrow

$$
\pm\left(\frac{2 E}{k}\right)^{1 / 2}=x_{ \pm}
$$

Initial amplitude of oscillation depends on the strength of the pluck!
If we start at x_{+}at $t=0$ (the sine term is zero at $t=0$, the cosine term is B at $t=0$)

$$
x(0)=\left(\frac{2 E}{k}\right)^{1 / 2} \Rightarrow B=\left(\frac{2 E}{k}\right)^{1 / 2}
$$

Note that the frequency of oscillation does not depend on the initial amplitude. To get A for initial condition $x(0)=x_{+}$, look at $t=\tau / 4$, where $\mathrm{x}(\tau / 4)=0$. Find $A=0$.

Alternatively, we can use frequency, phase form. For $x(0)=x_{+}$initial condition:

$$
\begin{aligned}
& x(t)=C \sin \left(\left(\frac{k}{m}\right)^{1 / 2} t+\phi\right) \\
& \text { if } x(0)=x_{+}=\left(\frac{2 E}{k}\right)^{1 / 2} \\
& C=\left(\frac{2 E}{k}\right)^{1 / 2}, \phi=-\pi / 2
\end{aligned}
$$

We are done. Now explore Quantum Mechanics - relevant stuff.
What is: Oscillation Frequency
Kinetic Energy $T(t), \bar{T}$
Potential Energy, $\mathrm{V}(t), \bar{V}$
Period τ ?

Oscillation Frequency: $v=\frac{\omega}{2 \pi}$ independent of E

Kinetic Energy: $\quad T(t)=\frac{1}{2} m \mathrm{v}(t)^{2}$

$$
\begin{aligned}
x(t) & =\left[\frac{2 E}{k}\right]^{1 / 2} \sin [\omega t+\phi] \text { take derivative of } x(t) \text { with respect to } t \\
\mathrm{v}(t) & =\omega\left[\frac{2 E}{k}\right]^{1 / 2} \cos [\omega t+\phi] \\
T(t) & =\frac{1}{2} m \underbrace{\omega^{2}}_{k / m}\left[\frac{2 E}{k}\right] \cos ^{2}[\omega t+\phi] \\
& =E \cos ^{2}(\omega t+\phi)
\end{aligned}
$$

Now some time averaged quantities:

$$
\begin{aligned}
\langle T\rangle & =\bar{T}=E \frac{\int_{0}^{\tau} d t \cos ^{2}(\omega t+\phi)}{\tau} \quad \text { recall } \tau=\frac{2 \pi}{\omega} \\
& =E / 2 \\
V(t) & =\frac{1}{2} k x^{2}=\frac{k}{2}\left(\frac{2 E}{k}\right) \sin ^{2}(\omega t+\phi) \\
& =E \sin ^{2}(\omega t+\phi) \\
E & =T(t)+V(t)=\bar{T}+\bar{V} \\
\bar{V} & =E / 2
\end{aligned}
$$

$$
V(t)=\frac{1}{2} k x^{2}=\frac{k}{2}\left(\frac{2 E}{k}\right) \sin ^{2}(\omega t+\phi) \quad \begin{aligned}
& \text { Calculate }\langle V\rangle \text { by } \int_{0}^{\tau} d t \text { or by simple } \\
& \text { aloebra helow }
\end{aligned}
$$

Really neat that $\bar{T}=\bar{V}=E / 2$.
Energy is being exchanged between T and V. They oscillate $\pi / 2$ out of phase: $V(t)=T\left(t-\frac{\tau}{4}\right)$
V lags T.
What about $x(t)$ and $p(t)$ when x is near the turning point?

$$
\begin{gathered}
x(t)=\left[\frac{2 E}{k}\right]^{1 / 2} \cos \omega t \\
x(t=0)=x_{+}
\end{gathered}
$$

x changing slowly near x turning point

p changing fastest near x turning point

Insights for wavepacket dynamics. We will see (in Lecture \#11) that "survival probability" $\left|\Psi^{*}(x, t) \Psi(x, 0)\right|^{2}$ decays near t.p. mostly because of \hat{p} rather than \hat{x}.

What about time-averages of x, x^{2}, p, p^{2} ?
$\left.\begin{array}{l}\langle x\rangle=0 \\ \langle p\rangle=0\end{array}\right\}$ is the HO potential moving in space?
$x^{2}=V(x) /(k / 2)$
take t-average
$\left\langle x^{2}\right\rangle=\frac{2}{k}\langle V(x)\rangle=\frac{2}{k} \frac{E}{2}=E / k$
$p^{2}=2 \mathrm{mT}$
$\left\langle p^{2}\right\rangle=2 m \frac{E}{2}=m E$
$\Delta x=\left\langle x^{2}-\langle x\rangle^{2}\right\rangle^{1 / 2}=(E / k)^{1 / 2}$
$\Delta p=\left\langle p^{2}-\langle p\rangle^{2}\right\rangle^{1 / 2}=(m E)^{1 / 2}$
$\Delta x \Delta p=E\left(\frac{m}{k}\right)^{1 / 2}=E / \omega$. small at low E

We will see an uncertainty relationship between x and p in Quantum Mechanics.
Probability of finding oscillator between x and $x+d x$: consider one half period, oscillator going from left to right turning point.

$$
\begin{aligned}
P(x) d x & =\frac{\operatorname{time}(x, x+d x)}{\tau / 2}=\frac{\frac{\text { distance }}{\text { velocity }}}{\frac{1}{2}\left(\frac{2 \pi}{\omega}\right)} \\
& =\frac{\frac{d x}{\frac{v(x)}{2 \omega}}=\frac{2 \omega}{v(x) 2 \pi} d x \quad\left(v(x) \text { small at } x=x_{ \pm}\right)}{}
\end{aligned}
$$

large probability at turning points. Goes to ∞ at $x_{ \pm}$.
minimum probability at $x=0$
In Quantum Mechanics, we will see that $\mathrm{P}\left(x_{ \pm}\right)$does not blow up and also that there is some probability outside the classically allowed region. Tunneling.

Non-Lecture

Next we want to go from one mass on an anchored spring to two masses connected by a spring.

$\mathrm{F}=\mathrm{m} a$ for each mass

$$
\begin{aligned}
& m_{1} \frac{d^{2} x_{1}}{d t^{2}}=k\left(x_{2}-x_{1}-\ell_{0}\right) \\
& m_{2} \frac{d^{2} x_{2}}{d t^{2}}=-k\left(x_{2}-x_{1}-\ell_{0}\right) \\
& \text { length of spring at rest }, \\
& \text { i.e. when } x_{2}-x_{1}=t_{0}
\end{aligned}
$$

2 coupled differential equations.

Uncouple them easily, as follows:
Add the 2 equations

$$
m_{1} \frac{d^{2} x_{1}}{d t^{2}}+m_{2} \frac{d^{2} x_{2}}{d t^{2}}=\frac{d^{2}}{d t^{2}}\left(m_{\substack{\text { we will see that } \\ \text { this sis. worst } \\ \text { proportional to } t}}\left(m_{1} x_{1}+m_{2} x_{2}\right)=0\right.
$$

Define a center of mass coordinate.

$$
\frac{m_{1} x_{1}+m_{2} x_{2}}{M}=X \quad M=m_{1}+m_{2}
$$

replace $m_{1} x_{1}+m_{2} x_{2}$ by $M X$

$$
M \frac{d^{2} X}{d t^{2}}=0
$$

integrate once with respect to t

$$
\frac{d X}{d t}(t)=\text { const } .
$$

The center of mass is moving at constant velocity - no force acting.
Next find a new differential equation expressed in terms of the relative coordinate

$$
x=x_{2}-x_{1}-+_{0} .
$$

Divide the first differential equation (located at the top of page 10) by m_{1}, the second by m_{2}, and subtract the first from the second:

$$
\begin{aligned}
\frac{d^{2} x_{2}}{d t^{2}}-\frac{d^{2} x_{1}}{d t^{2}} & =-\frac{k}{m_{2}}\left(x_{2}-x_{1}-\ell_{0}\right)-\frac{k}{m_{1}}\left(x_{2}-x_{1}-\ell_{0}\right) \\
\frac{d^{2}}{d t^{2}}\left(x_{2}-x_{1}\right) & =-k\left(\frac{1}{m_{2}}+\frac{1}{m_{1}}\right)\left(x_{2}-x_{1}-\ell_{0}\right) \\
& =-k\left(\frac{m_{1}+m_{2}}{m_{1} m_{2}}\right)\left(x_{2}-x_{1}-\ell_{0}\right)
\end{aligned}
$$

$$
\mu \equiv \frac{m_{1} m_{2}}{m_{1}+m_{2}}
$$

We get a familiar looking equation for the intramolecular displacement from equilibrium.

$$
\mu \frac{d^{2} x}{d t^{2}}+k x=0
$$

Everything is the same as the one-mass-on-an-anchored-spring problem except $m \rightarrow \mu$.

Next time: Quantum Mechanical Harmonic Oscillator

$$
\widehat{H}=\frac{\hat{p}^{2}}{2 \mu}+\frac{1}{2} k \hat{x}^{2}
$$

note that this differential operator does not have time in it!
We will see particle-like motion for harmonic oscillator when we consider the Time Dependent Schrödinger equation (Lecture \#10) and $\Psi(x, t)$ is constructed to be a particle-like state.

$$
\Psi(x, t) \quad \text { where } \Psi(x, 0)=\sum_{\mathrm{v}=0}^{\infty} c_{\mathrm{v}} \psi_{\mathrm{v}}
$$

in the $4^{\text {th }}$ lecture on Harmonic Oscillators (Lecture \#11).

MIT OpenCourseWare
https://ocw.mit.edu/

5.61 Physical Chemistry

Fall 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

