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Lecture #8:  Quantum Mechanical Harmonic Oscillator 
 
Last time 
 
Classical Mechanical Harmonic Oscillator 

* V (x) = 1
2
kx2  (leading term in power series expansion of most V(x) potential energy 

functions) 
* x is displacement from equilibrium (x = 0 at equilibrium) 
* angular frequency ω = k µ[ ]1/2  

* µ = m1m2

m1 +m2

 reduced mass 

From F = ma we get d
2x
dt 2

= − k
m
x  [we get x(t) from this, not from ψ(x) because this is 

Classical Mechanics] 
 

x(t) = Asinωt + Bcosωt = C sin ωt + φ( ) : general solution 
get (A,B) or (C,φ) from initial conditions of “pluck” 

 turning points x± (E) = ± 2E
k

⎛
⎝⎜

⎞
⎠⎟

1/2

from E =V x± (E)( )  

ν,ω,τ definitions and inter-relationships 

T (t),T (kinetic energy)
V (t),V (potential energy)

⎫
⎬
⎭⎪

 overbar means average value  

 
 
Today  
 

* simplify Schrödinger Equation to get rid of constant factors 
* solution:  Gaussian envelope × Hermite polynomial 
* pictures: at least as important as the mathematical form 
* semiclassical interpretation (not in most texts): combination of classical mechanics with 

quantum mechanics via λ(x) = h/p(x) (a unique and never-ending source of insight)  
* vibrational transition intensities and “selection rules” 

 
Quantum Mechanical Harmonic Oscillator (McQuarrie, Chapters 5.5, 5.8-10) 
 

 

 

H = T +V = p̂2

2µ
+ 1
2
kx̂2

= − 
2

2µ
∂
∂x2

+ 1
2
kx̂2

 



5.61 Fall, 2017 Lecture #8 Page 2 

  revised 8/7/17 11:21 AM 

 
We can “clean up” this equation by making the substitution 

 

 

ξ = α1/2x where α = kµ( )1/2  (ξ is dimensionless, 
which makes the equation “universal”)

2

2µ
∂2

∂x2 = 
2

2µ
α ∂2

∂ξ2 = 
2

k
µ

⎛
⎝⎜

⎞
⎠⎟

1/2 ∂2

∂ξ2 = 
2
ω ∂2

∂ξ2

because ∂
∂x

= ∂
∂ξ

∂ξ
∂x
α1/2


⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
2
kx2 = 1

2
k 1

α
⎛
⎝⎜

⎞
⎠⎟ ξ

2

= 1
2

k
µ

⎛
⎝⎜

⎞
⎠⎟

1/2

ξ2 = 1
2
ωξ2

 

 

 

H! = "ω
2

− ∂2

∂ξ2 + ξ
2⎡

⎣
⎢

⎤

⎦
⎥ much simpler form( )

H!ψ(ξ) = Eψ ξ( ) rearrange and divide by "ω
2

⎛
⎝⎜

⎞
⎠⎟  

 

 
0 = − ∂2

∂ξ2
+ ξ2 − 2E

!ω
⎡

⎣
⎢

⎤

⎦
⎥ψ ξ( )  

 
One can convert this into the Hermite differential equation by making the substitution 
ψ ξ( ) = e−ξ2 2 f ξ( )  and finding a new differential equation for f(ξ).  The reason for doing this is 

that the e−ξ
2 2  factor ensures that ψ → 0 as |ξ|  →  ∞.  Note that letting ξ2 → ∞ means that 2E/hω 

is negligible with respect to ξ2.  What is the solution to the differential equation if we ignore the 

 

2E
ω

 term? 

 
This is a very clean form of the Schrödinger equation because all of the k,µ-specific factors are 
absorbed into a dimensionless ξ variable.  Why would we want this? 
 
The Hermite polynomials (in integer powers of ξ) are solutions to the differential equation 

 
d 2Hn

dξ2
− 2ξ dHn

dξ
+ 2nHn = 0 .  (Hermite equation. Hn is a polynomial in ξ.) 

 
There are two very convenient “recursion relations” that relate the Hn–1 to the Hn, etc. 

(entire differential equation, except 
ψ, is dimensionless) 
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1. dHn

dξ
= 2nHn−1 ξ( ) . 

This looks like the effect of p̂  on Hn (because the leading term in Hn is ξn). 
2. Hn+1 ξ( ) = 2ξHn ξ( )− 2nHn−1 ξ( ) , rearranging 

 

ξHn (ξ) =
1
2
Hn+1 (ξ)+ nHn−1 (ξ).  

This looks like the effect of x̂  on Hn.  We will use this second recursion relation to compute 
integrals of the form 

dξ ψ n
*ξmψ p∫ . (n, m, p are integers). 

 
These recursion relations enable us to evaluate all integrals of the form 
 

 ∫ ψ v x̂n p̂m( )ψ v+dx . 
 
(We will postpone the actual evaluation until next lecture when we will also derive the “selection 
rule” for nonzero integrals): 

l = n + m, n + m – 2, … – (n + m). 
l is an integer and goes from its maximum value of n + m down to its minimum value in steps of 
2. 
 
There is also a general expression (Rodrigues formula) for all of the Hn 

 

Hn ξ( ) = −1( )n eξ
2 dn

dξn
e−ξ

2

 

 
 

 
The Hermite equation is a well known (to mathematicians) differential equation. 
 
The solutions of the harmonic oscillator Schrödinger equation are 
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 v(x) =
1

(2vv!)1/2

⇣↵
⇡

⌘1/4

| {z }
Nv

Hv(⇠)| {z } e

as x!±1z }| {
�⇠2/2

6

vibrational quantum
number Normalization

6

Hermite polynomial

⇠ = ↵1/2x

?

Gaussian envelope
ensures  ! 0

 
  v = 0, 1, 2, … (vee, not nu!) 

* Normalized 
* ψv(±∞) = 0 
* ψv(0) = 0 for odd-v (odd function) 

* dψ v

dx x=0
= 0 for even-v (even function), to be worked out 

 
Ev = hω(v + ½) 
 
What do we know about orthogonality?  Based on results derivable from postulates?  For 
non-degenerate eigenvalues: 

 
dx∫ ψ v

*ψ ′v = δ v ′v orthonormal  

Semi-Classical Picture – applicable to all 1-dimensional problems as a basis for insight, 
prediction, and obtaining ψ(x) without solving any differential equation. 
 
Classical: T(x) = E – V(x) = p(x)2/2µ 
  p(x) = [2m(E – V(x))]1/2 
 
p(x) is momentum in classical mechanics but just a convenient function in quantum mechanics. 

⊕ 
Quantum: de Broglie λ = h

p
 

  valid not just for free particle or a piecewise constant potential 
 

= 
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Semi-classical: λ(x) ≡ h
pclassical (x)

 

 
* pair of nodes nearest to x are spaced by λ(x)/2. 

 
Qualitative Shapes of ψv(x): 
 

* exponentially damped envelope, extending into non-classical (E < V(x)) regions (!!!!) 
* oscillations within classically allowed region with number of internal nodes equal to the 

quantum number 
* even v, even function, antinode at x = 0 
* outer lobes (near x+ and x–) are largest [see McQuarrie, page 226, Fig. 5.10 right side] 
* envelope within classically allowed region resembles what you expect from classical 

mechanics 

ψ *(x)ψ(x)dx ∝ dx
vclassical

 (slow speed↔high probability) 

vclassical = pclassical µ =
1
µ
2µ E −V (x)[ ]{ }1/2  

To derive the proportionality constant, consider the fraction of time the particle is 
found between x and x + dx:

 time x→ x + dx( )
time x−  to x+( ) =

probability of finding particle moving
 to right between x and x +  dx

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= dx vclassical x( )

τ / 2
 

 
τ is the quantum number independent period of the harmonic oscillator. 
 

τ = 1
ν
= 2π

ω
= 2π µ

k
⎛
⎝⎜

⎞
⎠⎟

1/2

v = ω / 2π, ω = [k / µ]1/2[ ]

ψ *(x)ψ(x)dx = dx
vclassical( ) τ 2( ) =

dx
2
µ
E −V (t)[ ]⎧

⎨
⎩

⎫
⎬
⎭

1/2
1
π

µ
k

⎛
⎝⎜

⎞
⎠⎟
−1/2

= k / 2π2

E −V (x)
⎡
⎣⎢

⎤
⎦⎥

1/2

dx

ψ *(x)ψ(x) = k / 2π2

E −V (x)
⎡
⎣⎢

⎤
⎦⎥

1/2 gives the classical (i.e. nodeless)
average of ψ *(x)ψ(x) near x

 

 

(but not the phase). [To get the classical envelope, assume that the maximum 
value of ψ*ψ is twice the average value.  [This is always a good approximation 
for a rapidly oscillating always positive function.]  Thus the envelope of 

ψ*(x)ψ(x) is 2k / π2

E −V (x)
⎡

⎣
⎢

⎤

⎦
⎥

1/2 ⎤

⎦
⎥
⎥
.   The envelope is the smooth curve that connects all 

of the maxima of ψ*(x)ψ(x) between x– and x+. 
* node spacing 
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(1) recall λ = h
p(x)

, use classical ideas to qualitatively locate nodes,  

(2) nodes are closest together when p is largest (near x = 0). Knowledge of the 
envelope and node spacing allow you to sketch ψ∗(x)ψ(x) without solving 
a differential equation.  

(3) or compute a “phase integral” ∆ x
λ(x)

= 1
2

(want to find value of ∆x that is 

equal to λ/2, the distance between nodes) 
 
replace λ(x) by h p(x).  We get

p(x)∆ x = h
2

 as the distance, ∆x, between nodes more accurately, dx
x

x+λ/2

∫ p(x) = h
2

⎡
⎣⎢

⎤
⎦⎥
.

 

The phase integral 2
h

pE (x)dxx1

x2∫  tells us how many nodes there are between x1 

and x2 at energy E.  This is the same as knowing how many bound energy levels 
lie at or below E. 
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What about pictures of ψ *(x)ψ(x) ?

* non-classical tails [(extend into region where E < V(x)]
* x+ lobe positive by convention (x– lobes alternate sign as –1v)
* lobes nearest x– and x+ largest
* nodes closest together near x = 0
* no zero crossings in classically forbidden region

Non-Lecture 

What do we do with these HO wavefunctions? 

1. calculate relative intensities of vibrational transitions

Figure removed due to copyright restrictions. See Figure 5.1 in: Merzbacher, 
Eugen. Quantum Mechanics. Wiley, 1997. ISBN: 9780471887027.
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2. Use perturbation theory (Lectures #14, #15 and #18) to compute 

consequences of higher than quadratic terms in V(x) 
 
e.g. for Morse oscillator 

 

 

Ev
hc

= ω v +1/ 2( )−ωx v +1/ 2( )2  

 
 
 
Spectral intensities 
 

I fi ∝ dx∫ ψ v f
* µ x( )ψ vi

2

 

electric dipole moment  
(HCl vs. H2, N2, O2, Cl2) 
(think of radio antenna) 

vf

vi

hν

 

 
 

spectrum

 
 
 
 
 

Two contributions to vibrational overtone transitions 
* mechanical anharmonicity (Morse potential) 
* electronic anharmonicity (higher derivatives of µ(x)) 

“anharmonicity”, comes mostly 
from x3 and x4 terms in V(x) 

(~ means cm–1 units) 

vf 

vi 

∆v = 0 
pure rotation 
spectrum 

∆v = ±1 
vibrational 
fundamental 

∆v = 0, ±2 
vibrational 
overtone 
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In the following we will look only at the electronic anharmonicity contributions. 
 

 

dxψ v f
* µ0 + µ1x +

1
2
µ2x

2⎡
⎣⎢

⎤
⎦⎥
ψ vi∫ = µ0 dx∫  ψ v f

*ψ vi

ortho-
normal
δv f vi



+µ1 dx∫  ψ v f
* xψ vi

see recursion
relationship

  
+ µ2

2
dx∫  ψ v f

* x2ψ vi

 

 
Recursion Relationships 
 

 

Hn+1(ξ) = 2ξHn (ξ)− 2nHn−1 ξ( )
ξHn (ξ)

xψv
 

= 1
2
Hn+1
ψv+1

 (ξ)+ nHn−1
ψv−1

 ξ( )
 

selection rule:  ∆v = ±1 
 
for x2 term selection rules  (evaluate in two steps) 

 

ξ2Hn =
1
2
ξHn+1 + nξHn−1

= 1
2
1
2
Hn+2 + (n +1)Hn

⎛
⎝⎜

⎞
⎠⎟ + n

1
2
Hn + (n −1)Hn−2

⎛
⎝⎜

⎞
⎠⎟

∆ v = 0,±2
 

 
Next time:  a†, a treatment 


