Lecture #9: <u>Harmonic Oscillator:</u> Creation and Annihilation Operators

Last time

Simplified Schrödinger equation:
$$\xi = \alpha^{1/2} x, \alpha = (k\mu)^{1/2}/\hbar$$

$$\left[-\frac{\partial^2}{\partial\xi^2} + \xi^2 - \frac{2E}{\hbar\omega}\right]\psi = 0 \quad \text{(dimensionless)}$$

reduced to Hermite differential equation by factoring out asymptotic form of ψ . The asymptotic ψ is valid as $\xi^2 \rightarrow \infty$. The exact ψ_{ν} is

$$Ψ_v(x) = N_v H_v(\xi) e^{-\xi^2/2}$$
Hermite polynomials
 $v = 0, 1, 2, ... ∞$

orthonormal set of basis functions

 $E_v = \hbar \omega (v + \frac{1}{2}), v = 0, 1, 2, ...$ even v, even function odd v, odd function

v = # of internal nodes

what do you expect about $\langle \hat{T} \rangle$? $\langle \hat{V} \rangle$? (from classical mechanics) pictures

- * zero-point energy
- * tails in non-classical regions
- * nodes more closely spaced near x = 0 where classical velocity is largest
- * envelope (what is this? maxima of all oscillations)
- * semiclassical: good for pictures, insight, estimates of $\int \psi_{\nu}^* \hat{O} p \psi_{\nu'}$ integrals without solving Schrödinger equation

$$p_E(x) = p_{\text{classical}}(x) = \left[2\mu(E - V(x))\right]^{1/2}$$

envelope of $\psi(x)$ in classical region (classical mechanics)

$$\left(\psi^* \psi dx \propto \frac{1}{\underbrace{v}_{\text{velocity}}}, \left| \psi(x) \right|_{\text{envelope}} = 2^{1/2} \left[\frac{2k/\pi^2}{E - V(x)} \right]^{1/4} \text{ for H. O.} \right)$$

spacing of nodes (quantum mechanics): # nodes between x_1 and x_2 is

$$\frac{2}{h} \int_{x_1}^{x_2} p_E(x) dx \quad \text{(because } \lambda(x) = h/p(x) \text{ and node spacing is } \lambda/2)$$

of levels below E: $\frac{2}{h} \int_{x_{-}(E)}^{x_{+}(E)} p_{E}(x) dx$

"Semi-classical quantization rule"

"Action (h) integral."

Non-Lecture Intensities of Vibrational fundamentals and overtones from $\mu(x) = \mu_0 + \mu_1 x + \frac{1}{2}\mu_2 x^2 + \dots$ $\int dx \, \psi_v^* x^n \psi_{v+m} \qquad \text{``selection rules''}$ $m = n, n - 2, \dots - n$

<u>Today</u> some amazing results from $\hat{\mathbf{a}}^{\dagger}, \hat{\mathbf{a}}$ (creation and annihilation operators)

- dimensionless $\hat{\tilde{x}}, \hat{\tilde{p}} \rightarrow$ exploit universal aspects of problem *separate universal from* * specific $\rightarrow \hat{a}, \hat{a}^{\dagger}$ annihilation/creation or "ladder" or "step-up" operators
- integral- and wavefunction-free Quantum Mechanics *
- all E_{ν} and ψ_{ν} for Harmonic Oscillator using $\hat{\mathbf{a}}, \hat{\mathbf{a}}^{\dagger}$ *
- values of integrals involving all integer powers of \hat{x} and/or \hat{p} *
- * "selection rules"
- * integrals evaluated on sight rather than by using integral tables.
- Create dimensionless \hat{x} and \hat{p} operators from \hat{x} and \hat{p} 1.

$$\hat{x} = \left[\frac{\hbar}{\mu\omega}\right]^{1/2} \hat{\tilde{x}}, \qquad \text{units} = \left[\frac{m\ell^2 t^{-1}}{mt^{-1}}\right]^{1/2} = \ell \qquad \left(\text{recall } \xi = \alpha^{1/2} x = \left[\frac{k\mu}{\hbar^2}\right]^{1/4} x\right)$$
$$\hat{p} = \left[\hbar\mu\omega\right]^{1/2} \hat{\tilde{p}}, \qquad \text{units} = \left[m\ell^2 t^{-1}mt^{-1}\right]^{1/2} = m\ell t^{-1} = p$$

replace \hat{x} and \hat{p} by dimensionless operators

$$\widehat{H} = \frac{\widehat{p}^{2}}{2\mu} + \frac{1}{2}k\widehat{x}^{2} = \frac{\hbar\mu\omega}{2\mu}\widehat{p}^{2} + \frac{k}{2}\frac{\hbar}{m\omega}\widehat{x}^{2}$$

$$= \frac{\hbar\omega}{2}[\widehat{p}^{2} + \widehat{x}^{2}] \qquad \text{factor th}$$

$$= \frac{\hbar\omega}{2}[(i\widehat{p} + \widehat{x})(-i\widehat{p} + \widehat{x})]? \qquad \text{do}$$

$$\downarrow \qquad \downarrow \qquad \text{get}$$

$$2^{1/2}\widehat{a} \quad 2^{1/2}\widehat{a}^{\dagger} \qquad \text{ord}$$

his?

es this work? No, this attempt at factorization nerates a term $i\left[\hat{\tilde{p}},\hat{\tilde{x}}\right]$, which must be subtracted out: $\widehat{H} = \frac{\hbar\omega}{2} \left(2\hat{\mathbf{a}}\hat{\mathbf{a}} - i \begin{bmatrix} \hat{p}, \hat{x} \end{bmatrix} \right)$

$$\hat{\mathbf{a}} = 2^{-1/2} \left(\hat{x} + i\hat{p} \right)$$
$$\hat{\mathbf{a}}^{\dagger} = 2^{-1/2} \left(\hat{x} - i\hat{p} \right)$$
$$\hat{x} = 2^{-1/2} \left(\hat{\mathbf{a}} + \hat{\mathbf{a}}^{\dagger} \right)$$
$$\hat{p} = i2^{-1/2} \left(\hat{\mathbf{a}}^{\dagger} - \hat{\mathbf{a}} \right)$$

be careful about $\begin{bmatrix} \hat{\tilde{x}}, \hat{\tilde{p}} \end{bmatrix} \neq 0$

We will find that

 $\hat{\mathbf{a}}\psi_{v} = (v)^{1/2}\psi_{v-1} \qquad \text{annihilates one quantum}$ $\hat{\mathbf{a}}^{\dagger}\psi_{v} = (v+1)^{1/2}\psi_{v+1} \qquad \text{creates one quantum}$ $\widehat{H} = \hbar\omega(\hat{\mathbf{a}}\hat{\mathbf{a}}^{\dagger} - 1/2) = \hbar\omega(\hat{\mathbf{a}}^{\dagger}\hat{\mathbf{a}} + 1/2).$

This is astonishingly convenient. It presages a form of operator algebra that proceeds without ever looking at the form of $\psi(x)$ and does not require <u>direct</u> evaluation of integrals of the form

$$A_{ij} = \int dx \, \psi_i^* \hat{A} \psi_j.$$

2. Now we must go back and repair our attempt to factor \hat{H} for the harmonic oscillator. Instructive examples of operator algebra.

* What is $(i\hat{\tilde{p}} + \hat{\tilde{x}})(-i\hat{\tilde{p}} + \hat{\tilde{x}})?$

$$\hat{\tilde{p}}^2 + \hat{\tilde{x}}^2 + \underbrace{i\hat{\tilde{p}}\hat{\tilde{x}} - i\hat{\tilde{x}}\hat{\tilde{p}}}_{i[\hat{\tilde{p}},\hat{\tilde{x}}]}$$

Recall $[\hat{p}, \hat{x}] = -i\hbar$. (work this out by $\hat{p}\hat{x}f - \hat{x}\hat{p}f = [\hat{p}, \hat{x}]f$).

What is $i \begin{bmatrix} \hat{\tilde{p}}, \hat{\tilde{x}} \end{bmatrix}$?

$$i\left[\hat{\tilde{p}},\hat{\tilde{x}}\right] = i\left[\hbar m\omega\right]^{-1/2} \left[\frac{\hbar}{m\omega}\right]^{-1/2} \left[\hat{p},\hat{x}\right]$$
$$= i\left[\hbar^{2}\right]^{-1/2} (-i\hbar) = +1.$$

So we were *not quite* successful in factoring \widehat{H} . We have to subtract $(1/2)\hbar\omega$:

This form for \widehat{H} is going to turn out to be very useful.

* Another trick, what about $[\hat{\mathbf{a}}, \hat{\mathbf{a}}^{\dagger}] = ?$

$$\begin{bmatrix} \hat{\mathbf{a}}, \widehat{\mathbf{a}^{\dagger}} \end{bmatrix} = \begin{bmatrix} 2^{-1/2} \left(i\hat{p} + \hat{x} \right), 2^{-1/2} \left(-i\hat{p} + \hat{x} \right) \end{bmatrix} = \frac{i}{2} \begin{bmatrix} \hat{p}, \hat{x} \end{bmatrix} + \frac{-i}{2} \begin{bmatrix} \hat{x}, \hat{p} \end{bmatrix}$$
$$= \frac{1}{2} + \frac{1}{2} = 1.$$

So we have some nice results. $\hat{H} = \hbar \omega \left[\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} + \frac{1}{2} \right] = \hbar \omega \left[\hat{\mathbf{a}} \hat{\mathbf{a}}^{\dagger} - \frac{1}{2} \right]$

3. Now we will derive some amazing results *almost* without ever looking at a wavefunction.

If ψ_v is an eigenfunction of \widehat{H} with energy E_v , then $\hat{\mathbf{a}}^{\dagger}\psi_v$ is an eigenfunction of \widehat{H} belonging to eigenvalue $E_v + \hbar\omega$.

$$\widehat{H}\left(\widehat{a^{\dagger}}\psi_{\nu}\right) = h\omega\left[\widehat{a}^{\dagger}\widehat{a} + \frac{1}{2}\right]\widehat{a}^{\dagger}\psi_{\nu}$$
$$= h\omega\left[\widehat{a}^{\dagger}\widehat{a}\widehat{a}^{\dagger} + \frac{1}{2}\widehat{a}^{\dagger}\right]\psi_{\nu}$$

Factor \hat{a}^{\dagger} out front

and
$$\hat{H}\psi_{\nu} = E_{\nu}\psi_{\nu}$$
, thus
 $\hat{H}(\hat{a}^{\dagger}\psi_{\nu}) = \hat{a}^{\dagger}(E_{\nu} + h\omega)\psi_{\nu} = (E_{\nu} + h\omega)(\hat{a}^{\dagger}\psi_{\nu})$

Therefore $\hat{\mathbf{a}}^{\dagger} \psi_{v}$ is eigenfunction of \widehat{H} with eigenvalue $E_{v} + \hbar \omega$.

So every time we apply $\hat{\mathbf{a}}^{\dagger}$ to ψ_{v} , we get a new eigenfunction of \widehat{H} and a new eigenvalue increased by $\hbar\omega$ from the previous eigenfunction. $\hat{\mathbf{a}}^{\dagger}$ creates one quantum of vibrational excitation.

Similar result for $\hat{\mathbf{a}} \psi_{v}$.

$$\widehat{H}(\widehat{\mathbf{a}}\psi_{v}) = (E_{v} - \hbar\omega)(\widehat{\mathbf{a}}\psi_{v}).$$

 $\hat{\mathbf{a}} \psi_v$ is eigenfunction of \widehat{H} that belongs to eigenvalue $E_v - \hbar \omega$. $\hat{\mathbf{a}}$ destroys one quantum of vibrational excitation.

We call \hat{a}^{\dagger} , \hat{a}^{\dagger} "ladder operators" or creation and annihilation operators (or step-up, step-down).

Now, suppose I apply $\hat{\mathbf{a}}$ to ψ_v many times. We know there must be a lowest energy eigenstate for the harmonic oscillator because $E_v \ge V(0)$.

We have a ladder and we know there must be a lowest rung on the ladder. If we try to step below the lowest rung we get

 $-i\hbar \frac{d}{dx}$

$$\hat{\mathbf{a}} \,\psi_{\min} = 0$$
$$2^{-1/2} \left[i\hat{\vec{p}} + \hat{\vec{x}} \right] \psi_{\min} = 0$$

Now we bring \hat{x} and \hat{p} back.

$$\begin{bmatrix} i(2\hbar\mu\omega)^{-1/2} \hat{p} + \left(\frac{\mu\omega}{2\hbar}\right)^{1/2} \hat{x} \end{bmatrix} \Psi_{\min} = 0$$
$$\begin{bmatrix} + \left(\frac{\hbar}{2\mu\omega}\right)^{1/2} \frac{d}{dx} + \left(\frac{\mu\omega}{2\hbar}\right)^{1/2} x \end{bmatrix} \Psi_{\min} = 0$$
$$\frac{d\Psi_{\min}}{dx} = -\left(\frac{2\mu\omega}{\hbar}\right)^{1/2} \left(\frac{\mu\omega}{2\hbar}\right)^{1/2} x \Psi_{\min}$$
$$= -\frac{\mu\omega}{\hbar} x \Psi_{\min}.$$

This is a first-order, linear, ordinary differential equation.

What kind of function has a first derivative that is equal to a negative constant times the variable times the function itself?

$$\frac{de^{-cx^2}}{dx} = -2cxe^{-cx^2}$$

$$c = \frac{\mu\omega}{2\hbar}$$

$$\psi_{\min} = N_{\min}e^{-\frac{\mu\omega}{2\hbar}x^2}.$$
 (A Gaussian)

The lowest vibrational level has eigenfunction, $\psi_{\min}(x)$, which is a simple Gaussian, centered at x = 0, and with tails extending into the classically forbidden E < V(x) regions.

Now normalize:

$$\int_{-\infty}^{\infty} dx \, \underbrace{\Psi_{\min}^{*} \Psi_{\min}}_{\text{give factor of}} = 1 = N_{\min}^{2} \, \underbrace{\int_{-\infty}^{\infty} dx \, e^{-\frac{\mu\omega}{\hbar}x^{2}}}_{\frac{\pi^{1/2}}{(\mu\omega/\hbar)^{1/2}}}$$

$$\underbrace{\Psi_{\min}(x) = \left(\frac{\mu\omega}{\pi\hbar}\right)^{1/4} e^{-\frac{\mu\omega}{2\hbar}x^{2}}}_{\psi_{\min}(x) = \left(\frac{\mu\omega}{\pi\hbar}\right)^{1/4} e^{-\frac{\mu\omega}{2\hbar}x^{2}}}$$

[recall asymptotic factor of $\psi(x)$: $e^{-\xi^2/2}$]

This is the lowest energy normalized wavefunction. It has zero nodes.

NON-LECTURE

Gaussian integrals

 $\int_{0}^{\infty} dx \ e^{-r^{2}x^{2}} = \frac{\pi^{1/2}}{2r}$ $\int_{0}^{\infty} dx \ xe^{-r^{2}x^{2}} = \frac{1}{2r^{2}}$ $\int_{0}^{\infty} dx \ x^{2}e^{-r^{2}x^{2}} = \frac{\pi^{1/2}}{4r^{3}}$ $\int_{0}^{\infty} dx \ x^{2n+1}e^{-r^{2}x^{2}} = \frac{n!}{2r^{2n+2}}$ $\int_{0}^{\infty} dx \ x^{2n}e^{-r^{2}x^{2}} = \pi^{1/2}\frac{1\cdot 3\cdot 5\cdots(2n-1)}{2^{n+1}r^{2n+1}}$

By inspection, using dimensional analysis, all of these integrals seem OK. We need to clean up a few loose ends.

1. Could there be several independent ladders built on linearly independent ψ_{min_1} , ψ_{min_2} ?

Assertion: for any 1-D potential it is possible to show that the energy eigenfunctions are arranged so that the quantum numbers increase in step with the number of internal nodes.

particle in box n = 1, 2, ... # nodes = 0, 1, ..., which translates into the general rule # nodes = n - 1

harmonic oscillator v = 0, 1, 2, ...

nodes = v

We have found a ψ_{\min} that has zero nodes. It must be the lowest energy eigenstate. Call it v = 0.

2. What is the lowest energy? We know that energy increases in steps of $\hbar\omega$.

$$E_{\nu+n}-E_{\nu}=n\hbar\omega.$$

We get the energy of ψ_{min} by plugging ψ_{min} into the Schrödinger equation.

BUT WE USE A TRICK:

$$\widehat{H} = \hbar \omega \left(\widehat{\mathbf{a}^{\dagger}} \widehat{\mathbf{a}} + \frac{1}{2} \right)$$
$$\widehat{H} \psi_{\min} = \hbar \omega \left(\widehat{\mathbf{a}^{\dagger}} \widehat{\mathbf{a}} + \frac{1}{2} \right) \psi_{\min}$$
but $\widehat{\mathbf{a}} \psi_{\min} = 0$ so $\widehat{H} \psi_{\min} = \hbar \omega \left(0 + \frac{1}{2} \right) \psi_{\min}$
$$E_{\min} = \frac{1}{2} \hbar \omega!$$

Now we also know

$$E_{\min+n} - E_{\min} = n\hbar\omega$$
OR
$$E_{0+\nu} - E_0 = \nu\hbar\omega, \text{ thus } E_\nu = \hbar\omega(\nu+1/2)$$

NON-LECTURE

3. We know

$$\hat{\mathbf{a}}^{\dagger} \boldsymbol{\Psi}_{v} = c_{v} \boldsymbol{\Psi}_{v+1}$$
$$\hat{\mathbf{a}} \boldsymbol{\Psi}_{v} = d_{v} \boldsymbol{\Psi}_{v-1}$$

what are c_v and d_v ?

$$\widehat{H} = \hbar \omega \left(\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} + \frac{1}{2} \right) = \hbar \omega \left(\hat{\mathbf{a}} \hat{\mathbf{a}}^{\dagger} - \frac{1}{2} \right)$$
$$\frac{\widehat{H}}{\hbar \omega} - \frac{1}{2} = \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}}, \quad \frac{\widehat{H}}{\hbar \omega} + \frac{1}{2} = \hat{\mathbf{a}} \hat{\mathbf{a}}^{\dagger}$$
$$\left(\frac{\widehat{H}}{\hbar \omega} - \frac{1}{2} \right) \Psi_{\nu} = \left(\nu + \frac{1}{2} - \frac{1}{2} \right) \Psi_{\nu} = \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} \Psi_{\nu}$$
$$\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} \Psi_{\nu} = \nu \Psi_{\nu}$$

$$\hat{\mathbf{a}}^{\dagger}\hat{\mathbf{a}}$$
 is "number operator", \widehat{N} .

for $\hat{a}\hat{a}^{\dagger}$ we use the trick

$$\hat{\mathbf{a}}\hat{\mathbf{a}}^{\dagger} = \hat{\mathbf{a}}^{\dagger}\hat{\mathbf{a}} + [\hat{\mathbf{a}},\hat{\mathbf{a}}^{\dagger}]_{+1} = \widehat{N} + 1$$

Now $\int dx \ \psi_v^* \hat{\mathbf{a}} \hat{\mathbf{a}}^\dagger \psi_v = \int dx \ \left| \hat{\mathbf{a}}^\dagger \psi_v \right|^2$ because $\hat{\mathbf{a}} \hat{\mathbf{a}}^\dagger$ is Hermitian Prescription for operating to the left is $\psi_v^* \hat{\mathbf{a}} = (\hat{\mathbf{a}}^* \psi_v)^* = (\hat{\mathbf{a}}^\dagger \psi_v)^*$

$$v+1 = |c_v|^2$$

 $c_v = [v+1]^{1/2}$

similarly for d_v in $\hat{\mathbf{a}} \Psi_v = d_v \Psi_{v-1}$

$$\int dx \, \psi_v^* \hat{\mathbf{a}}^\dagger \hat{\mathbf{a}} \psi_v = v$$
$$\int dx \left| \hat{\mathbf{a}} \psi_v \right|^2 = \left| d_v \right|^2$$
$$d_v = v^{1/2}$$

Make phase choice and then verify by putting in \hat{x} and \hat{p} .

Again, verify phase choice

$$\hat{\mathbf{a}}^{\dagger} \boldsymbol{\psi}_{v} = (v+1)^{1/2} \boldsymbol{\psi}_{v+1}$$

$$\hat{\mathbf{a}} \boldsymbol{\psi}_{v} = (v)^{1/2} \boldsymbol{\psi}_{v-1}$$

$$\widehat{N} = \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}}$$

$$\widehat{N} \boldsymbol{\psi}_{v} = v \boldsymbol{\psi}_{v}$$

$$[\hat{\mathbf{a}}, \hat{\mathbf{a}}^{\dagger}] = 1$$
Remember these five exceptionally important equations!

Now we are ready to exploit the $\widehat{a^{\dagger}}, \hat{a}$ operators.

Suppose we want to look at vibrational transition intensities.

$$\mu(x) = \mu_0 + \mu_1 \hat{x} + \mu_2 \hat{x}^2 / 2 + \dots$$

More generally, suppose we want to compute an integral involving some integer power of \hat{x} (or \hat{p}).

$$\hat{\mathbf{a}}^{\dagger} = 2^{-1/2} \left(-i\hat{p} + \hat{x} \right)$$

$$\hat{\mathbf{a}} = 2^{-1/2} \left(i\hat{p} + \hat{x} \right)$$

$$\hat{N} = \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} \qquad \text{(number operator)}$$

$$\hat{x} = 2^{-1/2} \left(\hat{\mathbf{a}}^{\dagger} + \hat{\mathbf{a}} \right)$$

$$\hat{p} = 2^{-1/2} i \left(\hat{\mathbf{a}}^{\dagger} - \hat{\mathbf{a}} \right)$$

$$\hat{x} = \left[\frac{\mu \omega}{\hbar} \right]^{-1/2} \hat{x} = \left[\frac{2\mu \omega}{\hbar} \right]^{-1/2} \left(\hat{\mathbf{a}}^{\dagger} + \hat{\mathbf{a}} \right)$$

$$\hat{p} = \left[\hbar \mu \omega \right]^{1/2} \hat{p} = \left[\frac{\hbar \mu \omega}{2} \right]^{1/2} i \left(\hat{\mathbf{a}}^{\dagger} - \hat{\mathbf{a}} \right)$$

$$\widehat{x^{2}} = \frac{\hbar}{2\mu\omega} (\widehat{\mathbf{a}}^{\dagger} + \widehat{\mathbf{a}}) (\widehat{\mathbf{a}}^{\dagger} + \widehat{\mathbf{a}}) = \frac{\hbar}{2\mu\omega} [\widehat{\mathbf{a}}^{\dagger 2} + \widehat{\mathbf{a}}^{2} + \widehat{\mathbf{a}}^{\dagger} \widehat{\mathbf{a}} + \widehat{\mathbf{a}} \widehat{\mathbf{a}}^{\dagger}] = \frac{\hbar}{2\mu\omega} [\widehat{\mathbf{a}}^{\dagger 2} + \widehat{\mathbf{a}}^{2} + 2\widehat{\mathbf{a}}^{\dagger} \widehat{\mathbf{a}} + 1]$$

$$\widehat{p^{2}} = -\frac{\hbar\mu\omega}{2} (\widehat{\mathbf{a}}^{\dagger 2} + \widehat{\mathbf{a}}^{2} - \widehat{\mathbf{a}}^{\dagger} \widehat{\mathbf{a}} - \widehat{\mathbf{a}} \widehat{\mathbf{a}}^{\dagger}) = \frac{-\hbar\mu\omega}{2} [\widehat{\mathbf{a}}^{\dagger 2} + \widehat{\mathbf{a}}^{2} - 2\widehat{\mathbf{a}}^{\dagger} \widehat{\mathbf{a}} - 1]$$

etc.

$$\widehat{H} = \frac{p^2}{2\mu} + \frac{k}{2}\widehat{x^2} = -\frac{\hbar\omega}{4}(\widehat{\mathbf{a}}^{\dagger 2} + \widehat{\mathbf{a}}^2 - 2\widehat{\mathbf{a}}^{\dagger}\widehat{\mathbf{a}} - 1) + \frac{\hbar\omega}{4}(\widehat{\mathbf{a}}^{\dagger 2} + \widehat{\mathbf{a}}^2 + 2\widehat{\mathbf{a}}^{\dagger}\widehat{\mathbf{a}} + 1) = \hbar\omega(\widehat{\mathbf{a}}^{\dagger}\widehat{\mathbf{a}} + 1/2)$$

as expected. The terms in \widehat{H} involving $\hat{\mathbf{a}}^{\dagger 2} + \hat{\mathbf{a}}^2$ exactly cancel out.

Look at an $(\hat{\mathbf{a}}^{\dagger})^m (\hat{\mathbf{a}})^n$ operator and, from m - n, read off the selection rule for Δv . Integral is not zero when the selection rule is satisfied.

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

5.61 Physical Chemistry Fall 2017

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.