
5.61 Fall, 2017 Lecture #9 Page 1 

  revised 8/7/17 11:23 AM 

Lecture #9:  Harmonic Oscillator: 
Creation and Annihilation Operators 

 
Last time 
 
Simplified Schrödinger equation:   ξ = α1/2x, α = (kµ)1/2   

 
− ∂2

∂ξ2
+ ξ2 − 2E

ω
⎡

⎣
⎢

⎤

⎦
⎥ψ = 0 (dimensionless)  

reduced to Hermite differential equation by factoring out asymptotic form of ψ.  The asymptotic 
ψ is valid as ξ2 → ∞.  The exact ψv is  
 
 
ψ v(x) = NvHv(ξ)e

−ξ2 2  v = 0, 1, 2, … ∞ 
 
orthonormal set of basis functions 
Ev = hω(v + ½), v = 0, 1, 2, … 
even v, even function 
odd v, odd function 
 v = # of internal nodes 
what do you expect about  T ?  V ?  (from classical mechanics) 
pictures 

* zero-point energy 
* tails in non-classical regions 
* nodes more closely spaced near x = 0 where classical velocity is largest 
* envelope (what is this?  maxima of all oscillations) 
* semiclassical:  good for pictures, insight, estimates of ψ v

*∫ Ôpψ ′v  integrals without 
solving Schrödinger equation 
pE (x) = pclassical (x) = 2µ E − V (x)( )⎡⎣ ⎤⎦

1/2  
envelope of ψ(x) in classical region (classical mechanics) 

 

ψ *ψdx ∝ 1
v

velocity


,  ψ(x) envelope = 21/2 2k / π2

E −V (x)
⎡
⎣⎢

⎤
⎦⎥

1/4

 for H. O.
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

spacing of nodes (quantum mechanics):  # nodes between x1 and x2 is 
2
h

pE (x) dxx1

x2∫    (because λ(x) = h/p(x) and node spacing is λ/2) 

# of levels below E:  2
h

pE (x) dxx− (E )

x+ (E )∫    “Semi-classical quantization rule” 

      “Action (h) integral.” 

Hermite polynomials 



5.61 Fall, 2017 Lecture #9 Page 2 

  revised 8/7/17 11:23 AM 

 
Non-Lecture 

Intensities of Vibrational fundamentals and overtones from 

µ(x) = µ0 + µ1x +
1
2
µ2x

2 +…

dx∫  ψ v
*xnψ v+m “selection rules”

m = n, n − 2, … −n

 

 
Today  some amazing results from  a

†, â  (creation and annihilation operators) 
 

* dimensionless  ̂x, ̂p  → exploit universal aspects of problem — separate universal from 
specific → â, â†  annihilation/creation or “ladder” or “step-up” operators 

* integral- and wavefunction-free Quantum Mechanics 
* all Ev and ψv for Harmonic Oscillator using â, â†  
* values of integrals involving all integer powers of x̂  and/or p̂  
* “selection rules” 
* integrals evaluated on sight rather than by using integral tables. 

 
1. Create dimensionless  ̂x and ̂p  operators from x̂ and p̂  
 

 

x̂ =

µω

⎡
⎣⎢

⎤
⎦⎥

1/2

̂x,  units = m2t −1

mt −1

⎡
⎣⎢

⎤
⎦⎥

1/2

=  recall ξ=α1/2x = kµ
2

⎡
⎣⎢

⎤
⎦⎥

1/4

x
⎛
⎝⎜

⎞
⎠⎟

p̂ = µω[ ]1/2 ̂p,  units = m2t −1mt −1[ ]1/2 = mt −1 = p

 

 
replace x̂  and p̂  by dimensionless operators 
 

 

H = p̂2

2µ
+ 1

2
kx̂2 = µω

2µ
ω
2

 
̂p2 + k

2

mω
ω
2

 
̂x2

= ω
2
̂p2 + ̂x2⎡⎣ ⎤⎦ factor this?

= ω
2 i ̂p + ̂x( ) −i ̂p + ̂x( )⎡⎣ ⎤⎦?

↓ ↓

21/2 â 21/2 â†

 
does this work?  No, this attempt at factorization 
generates a term  i ̂p, ̂x⎡⎣ ⎤⎦ , which must be subtracted 

out:  
 
H = ω

2
2ââ − i ̂p, ̂x⎡⎣ ⎤⎦

=− i
 

⎛
⎝⎜

⎞
⎠⎟
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â = 2−1/2 ̂x + i ̂p( )
â† = 2−1/2 ̂x − i ̂p( )
̂x = 2−1/2 â + â†( )
̂p = i2−1/2 â† − â( )

 

 be careful about ̂x, ̂p⎡⎣ ⎤⎦ ≠ 0
 

 
 
We will find that 

 

 

âψ v = v( )1/2 ψ v−1 annihilates one quantum

â†ψ v = v +1( )1/2 ψ v+1 creates one quantum

H = ω ââ† −1/ 2( ) = ω â†â +1/ 2( ).
 

 
This is astonishingly convenient.  It presages a form of operator algebra that proceeds without 
ever looking at the form of ψ(x) and does not require direct evaluation of integrals of the form 

 

Aij = ∫ dx ψ i
*Âψ j .  

 
2. Now we must go back and repair our attempt to factor  H  for the harmonic oscillator.   
 
Instructive examples of operator algebra. 
 
* What is  i ̂p + ̂x( ) −i ̂p + ̂x( )? 

 

 

̂p2 + ̂x2 + i ̂p ̂x − i ̂x ̂p
i ̂p, ̂x⎡⎣ ⎤⎦
 

 

 
Recall  p̂, x̂[ ] = −i .  (work this out by p̂x̂f − x̂p̂f = p̂, x̂[ ] f ). 
 
What is  i ̂p, ̂x⎡⎣ ⎤⎦ ? 
 

 

i ̂p, ̂x⎡⎣ ⎤⎦ = i mω[ ]−1/2 
mω

⎡
⎣⎢

⎤
⎦⎥

−1/2

p̂, x̂[ ]

= i 2[ ]−1/2 −i( ) = +1.
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So we were not quite successful in factoring  H .  We have to subtract (1/2)hω: 
 

 

H = ω
âa† − 1

2
left
over



⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

This form for  H  is going to turn out to be very useful. 
 
* Another trick, what about â, â†[ ]= ? 

 

 

â,a†⎡⎣ ⎤⎦ = 2−1/2 i ̂p + ̂x( ),2−1/2 −i ̂p + ̂x( )⎡⎣ ⎤⎦ =
i
2
̂p, ̂x⎡⎣ ⎤⎦ +

−i
2
̂x, ̂p⎡⎣ ⎤⎦

= 1
2
+ 1
2
= 1.

 

 

So we have some nice results.  
 
Ĥ = ω â†â + 1

2
⎡
⎣⎢

⎤
⎦⎥
= ω ââ† − 1

2
⎡
⎣⎢

⎤
⎦⎥
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3. Now we will derive some amazing results almost without ever looking at a wavefunction. 
 
If ψv is an eigenfunction of  H  with energy Ev, then â†ψ v  is an eigenfunction of  H  belonging to 
eigenvalue Ev + hω. 

H a†ψ v( ) = hω â†â + 1
2

⎡
⎣⎢

⎤
⎦⎥
â†ψ v

= hω â†ââ† + 1
2

â†⎡
⎣⎢

⎤
⎦⎥
ψ v

= â†hω ââ† + 1
2

⎡
⎣⎢

⎤
⎦⎥
ψ v

ââ† = â, â†⎡⎣ ⎤⎦ + â†â =1+ â†â

H â†ψ v( ) = â† hω â†â +1+ 1
2

⎡
⎣⎢

⎤
⎦⎥

H+hω
 

ψ v

and Ĥψ v = Evψ v, thus

H â†ψ v( ) = â† Ev + hω( )ψ v = Ev + hω( ) â†ψ v( )

 

Therefore â †ψv is eigenfunction of  H  with eigenvalue Ev + hω. 
 
So every time we apply â † to ψv, we get a new eigenfunction of  H  and a new eigenvalue 

increased by hω from the previous eigenfunction. â † creates one quantum of vibrational 
excitation. 

 
Similar result for âψv. 

 

 H
 âψ v( ) = Ev − ω( ) âψ v( ) . 

 
âψv is eigenfunction of  H  that belongs to eigenvalue Ev – hω. â  destroys one quantum of 
vibrational excitation. 
 
We call â †, â  “ladder operators” or creation and annihilation operators (or step-up, step-down). 
 

Factor â†  out front  
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Now, suppose I apply â  to ψv many times.  We know there must be a lowest energy eigenstate 
for the harmonic oscillator because Ev ≥ V(0). 
 
We have a ladder and we know there must be a lowest rung on the ladder.  If we try to step 
below the lowest rung we get 
 âψmin = 0 

 2
−1/2 i ̂p + ̂x⎡⎣ ⎤⎦ψmin = 0  

 
Now we bring x̂ and p̂  back. 

 
 

 
This is a first-order, linear, ordinary differential equation. 
 
What kind of function has a first derivative that is equal to a negative constant times the variable 
times the function itself? 

 

 

de−cx
2

dx
= −2cxe−cx

2

c = µω
2

ψmin = Nmine
− µω
2

x2

.

 

 
The lowest vibrational level has eigenfunction, ψmin(x), which is a simple Gaussian, centered at 
x = 0, and with tails extending into the classically forbidden E < V(x) regions. 

 
−i d

dx
 

 

i 2µω( )−1/2 p̂ + µω
2

⎛
⎝⎜

⎞
⎠⎟
1/2

x̂
⎡
⎣
⎢

⎤
⎦
⎥ψmin = 0

+

2µω

⎛
⎝⎜

⎞
⎠⎟
1/2 d
dx

+ µω
2

⎛
⎝⎜

⎞
⎠⎟
1/2

x
⎡

⎣
⎢

⎤

⎦
⎥ψmin = 0

dψmin

dx
= − 2µω


⎛
⎝⎜

⎞
⎠⎟
1/2 µω

2
⎛
⎝⎜

⎞
⎠⎟
1/2

xψmin

= − µω

xψmin.
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Now normalize: 

 

dx
−∞

∞

∫  ψmin
* ψmin

give factor of
2 in exponent

 
= 1= Nmin

2 dx
–∞

∞

∫  e
− µω

x2

π1/2

µω ( )1/2

ψmin (x )= µω
π

⎛
⎝⎜

⎞
⎠⎟

1/4
e
− µω

2
x2

 
 

[recall asymptotic factor of ψ(x):  e−ξ
2 /2 ] 

 
This is the lowest energy normalized wavefunction.  It has zero nodes. 

NON-LECTURE 
Gaussian integrals 
 

dx
0

∞

∫  e−r
2x2 = π1/2

2r
 

 

dx
0

∞

∫  xe−r
2x2 = 1

2r2
 

 

dx
0

∞

∫  x2e−r
2x2 = π1/2

4r3
 

 

dx
0

∞

∫  x2n+1e−r
2x2 = n!

2r2n+2
 

 

 
dx

0

∞

∫  x2ne−r
2x2 = π1/2 1⋅3⋅5 2n −1( )

2n+1r2n+1
 

By inspection, using dimensional analysis, all of these integrals seem OK. 
We need to clean up a few loose ends. 
 
1. Could there be several independent ladders built on linearly independent ψmin1

, ψmin2
? 

 
Assertion:  for any 1-D potential it is possible to show that the energy eigenfunctions are 
arranged so that the quantum numbers increase in step with the number of internal nodes. 
 
particle in box n = 1, 2, … 

   # nodes = 0, 1, …, which translates into the general rule 
  # nodes = n – 1 
 
harmonic oscillator v = 0, 1, 2, … 
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   # nodes = v 
 
We have found a ψmin that has zero nodes.  It must be the lowest energy eigenstate.  Call 
it v = 0. 
 

2. What is the lowest energy?  We know that energy increases in steps of hω. 
 

Ev+n – Ev = nhω. 
 

We get the energy of ψmin by plugging ψmin into the Schrödinger equation.   
 
BUT WE USE A TRICK: 

 

 

H = ω a†â + 1
2

⎛
⎝⎜

⎞
⎠⎟

Hψmin = ω a†â + 1
2

⎛
⎝⎜

⎞
⎠⎟ ψmin

but âψmin = 0

so Hψmin = ω 0 + 1
2

⎛
⎝⎜

⎞
⎠⎟ ψmin

Emin =
1
2
ω!

 

Now we also know  

 

Emin+n − Emin = nω
OR

E0+v − E0 = vω, thus Ev = ω(v +1/ 2)
 

NON-LECTURE 
 

3. We know  
 

â†ψ v = cvψ v+1

âψ v = dvψ v−1

 

what are cv and dv? 
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H = ω â†â + 1
2

⎛
⎝⎜

⎞
⎠⎟ = ω ââ† − 1

2
⎛
⎝⎜

⎞
⎠⎟

H

ω
− 1
2
= â†â, H

ω
+ 1
2
= ââ†

H

ω
− 1
2

⎛
⎝⎜

⎞
⎠⎟
ψ v = v + 1

2
− 1
2

⎛
⎝⎜

⎞
⎠⎟ ψ v = â

†âψ v

 

 
â † âψv = vψv 

 
â † â is “number operator”,  N . 

 
for ââ † we use the trick 

 

 
ââ† = â†â + â, â†[ ]

+1
 

= N +1  

 
Now dx∫  ψ v

*ââ†ψ v = dx∫   â†ψ v
2  because ââ†  is Hermitian 

Prescription for operating to the left is ψ v
*â = â*ψ v( )* = a†ψ v( )*  

v+1= cv
2

cv = v+1[ ]1/2  

similarly for dv in âψv = dvψv−1  
 

dx∫  ψ v
*â†âψ v = v

dx∫ âψ v
2 = dv

2  

 
 
Make phase choice and then verify by putting 
in x̂  and p̂ . 

dv = v1/2 Again, verify phase choice 
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â†ψ v = v +1( )1/2ψ v+1

âψ v = v( )1/2ψ v−1

N = â†â

Nψ v = vψ v

â, â†[ ] = 1
 

 
 

Now we are ready to exploit the  a
†, â  operators. 

 
Suppose we want to look at vibrational transition intensities. 

 

µ(x) = µ0 + µ1x̂ + µ2 x̂
2 2 +…  

 
More generally, suppose we want to compute an integral involving some integer power of x̂ (or 
p̂ ). 

 

 

â† = 2−1/2 −i ̂p + ̂x( )
â = 2−1/2 i ̂p + ̂x( )
N = â†â (number operator)

̂x = 2−1/2 â† + â( )
̂p = 2−1/2 i â† − â( )

 

 

 

x̂ = µω


⎡
⎣⎢

⎤
⎦⎥

−1/2

̂x = 2µω


⎡
⎣⎢

⎤
⎦⎥

−1/2

â† + â( )

p̂ = µω[ ]1/2 ̂p = µω
2

⎡
⎣⎢

⎤
⎦⎥

1/2

i â† − â( )
 

use  ̂a,a
†  
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x2 = 

2µω â† + â( ) â† + â( ) = 
2µω â†2 + â2 + â†â + ââ†[ ] = 

2µω â†2 + â2 + 2â†â +1[ ]  

 

 
p2 = − µω

2 â†2 + â2 − â†â − ââ†( ) = −µω
2 â†2 + â2 − 2â†â −1[ ]  

 
 etc. 
 

 
H = p2

2µ
+ k
2
x2 = − ω

4 â†2 + â2 − 2â†â −1( )+ ω
4 â†2 + â2 + 2â†â +1( ) = ω â†â +1/ 2( )  

 
as expected.  The terms in  H  involving â†2 + â2  exactly cancel out.   
 
Look at an â†( )m â( )n  operator and, from m – n, read off the selection rule for ∆v.  Integral is not 
zero when the selection rule is satisfied. 
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