Lecture \#9: Harmonic Oscillator:
 Creation and Annihilation Operators

Last time
Simplified Schrödinger equation: $\xi=\alpha^{1 / 2} x, \alpha=(k \mu)^{1 / 2} / \hbar$
$\left[-\frac{\partial^{2}}{\partial \xi^{2}}+\xi^{2}-\frac{2 E}{\hbar \omega}\right] \psi=0 \quad$ (dimensionless)
reduced to Hermite differential equation by factoring out asymptotic form of ψ. The asymptotic ψ is valid as $\xi^{2} \rightarrow \infty$. The exact ψ_{v} is

orthonormal set of basis functions
$E_{v}=\hbar \omega(v+1 / 2), v=0,1,2, \ldots$
even v, even function
odd v, odd function
$v=$ \# of internal nodes
what do you expect about $\langle\hat{T}\rangle$? $\langle\hat{V}\rangle$? (from classical mechanics)
pictures

* zero-point energy
* tails in non-classical regions
* nodes more closely spaced near $x=0$ where classical velocity is largest
* envelope (what is this? maxima of all oscillations)
* semiclassical: good for pictures, insight, estimates of $\int \Psi_{v}^{*} \hat{O} p \psi_{v^{\prime}}$ integrals without solving Schrödinger equation
$p_{E}(x)=p_{\text {classical }}(x)=[2 \mu(E-V(x))]^{1 / 2}$
envelope of $\psi(x)$ in classical region (classical mechanics)
$\left(\psi^{*} \psi d x \propto \underset{\substack{v \\ \text { velocity }}}{\frac{1}{v}}|\psi(x)|_{\text {envelope }}=2^{1 / 2}\left[\frac{2 k / \pi^{2}}{E-V(x)}\right]^{1 / 4}\right.$ for H.O. $)$
spacing of nodes (quantum mechanics): \# nodes between x_{1} and x_{2} is

$$
\left.\frac{2}{h} \int_{x_{1}}^{x_{2}} p_{E}(x) d x \quad \text { (because } \lambda(x)=h / p(x) \text { and node spacing is } \lambda / 2\right)
$$

\# of levels below E: $\frac{2}{h} \int_{x_{-}(E)}^{x_{+}(E)} p_{E}(x) d x \quad$ "Semi-classical quantization rule"
"Action (h) integral."

Intensities of Vibrational fundamentals and overtones from

$$
\begin{aligned}
& \mu(x)=\mu_{0}+\mu_{1} x+\frac{1}{2} \mu_{2} x^{2}+\ldots \\
& \int d x \psi_{\mathrm{v}}^{*} x^{n} \psi_{v+m} \quad \text { "selection rules" } \\
& m=n, n-2, \ldots-n
\end{aligned}
$$

Today some amazing results from $\widehat{\mathbf{a}^{\dagger}}, \hat{\mathbf{a}}$ (creation and annihilation operators)

* dimensionless $\hat{\tilde{x}}, \hat{\tilde{p}} \rightarrow$ exploit universal aspects of problem - separate universal from specific $\rightarrow \hat{\mathbf{a}}, \hat{\mathbf{a}}^{\dagger}$ annihilation/creation or "ladder" or "step-up" operators
* integral- and wavefunction-free Quantum Mechanics
* all E_{v} and ψ_{v} for Harmonic Oscillator using $\hat{\mathbf{a}}, \hat{\mathbf{a}}^{\dagger}$
* values of integrals involving all integer powers of \hat{x} and/or \hat{p}
* "selection rules"
* integrals evaluated on sight rather than by using integral tables.

1. Create dimensionless $\hat{\tilde{x}}$ and $\hat{\tilde{p}}$ operators from \hat{x} and \hat{p}

$$
\begin{array}{ll}
\hat{x}=\left[\frac{\hbar}{\mu \omega}\right]^{1 / 2} \hat{\tilde{x}}, & \text { units }=\left[\frac{m \ell^{2} t^{-1}}{m t^{-1}}\right]^{1 / 2}=\ell \quad\left(\text { recall } \xi=\alpha^{1 / 2} x=\left[\frac{k \mu}{\hbar^{2}}\right]^{1 / 4} x\right) \\
\hat{p}=[\hbar \mu \omega]^{1 / 2} \hat{\tilde{p}}, & \text { units }=\left[m \ell^{2} t^{-1} m t^{-1}\right]^{1 / 2}=m \ell t^{-1}=p
\end{array}
$$

replace \hat{x} and \hat{p} by dimensionless operators

$$
\begin{array}{rlr}
\widehat{H}=\frac{\hat{p}^{2}}{2 \mu}+\frac{1}{2} k \hat{x}^{2} & =\underbrace{\frac{\hbar \omega}{2}}_{\frac{\hbar \mu \omega}{2 \mu}} \hat{\tilde{p}}^{2}+\underbrace{\frac{k}{2} \frac{\hbar \omega}{m}}_{\frac{\hbar \omega}{2}} \hat{\tilde{x}}^{2} & \\
& =\frac{\hbar \omega}{2}\left[\hat{\tilde{p}}^{2}+\hat{\tilde{x}}^{2}\right] & \text { factor this? } \\
& =\frac{\hbar \omega}{2}[(i \hat{\tilde{p}}+\hat{\tilde{x}})(-i \hat{\tilde{p}}+\hat{\tilde{x}})] ? & \\
\downarrow & \downarrow & \text { does this work? No, this attempt at factorization } \\
2^{1 / 2} \hat{\mathbf{a}} \quad 2^{1 / 2} \hat{\mathbf{a}}^{\dagger} & \text { generates a term } i[\hat{\tilde{p}}, \hat{\tilde{x}}], \text { which must be subtracted } \\
& & \text { out: } \widehat{H}=\frac{\hbar \omega}{2}\left(2 \hat{\mathbf{a}} \hat{\mathbf{a}}-i\left[\begin{array}{l}
\hat{\tilde{p}}, \hat{\tilde{x}}] \\
=-i
\end{array}\right)\right.
\end{array}
$$

$$
\begin{aligned}
& \hline \hat{\mathbf{a}}=2^{-1 / 2}(\hat{\tilde{x}}+i \hat{\tilde{p}}) \\
& \hat{\mathbf{a}}^{\dagger}=2^{-1 / 2}(\hat{\tilde{x}}-i \hat{\tilde{p}}) \\
& \hat{\tilde{x}}=2^{-1 / 2}\left(\hat{\mathbf{a}}+\hat{\mathbf{a}}^{\dagger}\right) \\
& \hat{\tilde{p}}=i 2^{-1 / 2}\left(\hat{\mathbf{a}}^{\dagger}-\hat{\mathbf{a}}\right)
\end{aligned}
$$

be careful about $[\hat{\tilde{x}}, \hat{\tilde{p}}] \neq 0$

We will find that

$$
\begin{array}{ll}
\hat{\mathbf{a}} \psi_{v}=(v)^{1 / 2} \psi_{v-1} & \text { annihilates one quantum } \\
\hat{\mathbf{a}}^{\dagger} \psi_{v}=(v+1)^{1 / 2} \psi_{v+1} & \text { creates one quantum } \\
\widehat{H}=\hbar \omega\left(\hat{\mathbf{a}} \hat{\mathbf{a}}^{\dagger}-1 / 2\right)=\hbar \omega\left(\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}}+1 / 2\right)
\end{array}
$$

This is astonishingly convenient. It presages a form of operator algebra that proceeds without ever looking at the form of $\psi(x)$ and does not require direct evaluation of integrals of the form

$$
A_{i j}=\int d x \psi_{i}^{*} \hat{A} \psi_{j}
$$

2. Now we must go back and repair our attempt to factor \widehat{H} for the harmonic oscillator.

Instructive examples of operator algebra.

* What is $(i \hat{\tilde{p}}+\hat{\tilde{x}})(-i \hat{\tilde{p}}+\hat{\tilde{x}})$?

$$
\hat{\tilde{p}}^{2}+\hat{\tilde{x}}^{2}+\underbrace{i \hat{\tilde{p}} \hat{\tilde{x}}-i \hat{\tilde{x}} \hat{\tilde{p}}}_{i[\hat{\tilde{p}}, \hat{\tilde{p}}]}
$$

Recall $[\hat{p}, \hat{x}]=-i \hbar .($ work this out by $\hat{p} \hat{x} f-\hat{x} \hat{p} f=[\hat{p}, \hat{x}] f)$.

What is $i[\hat{\tilde{p}}, \hat{\tilde{x}}]$?

$$
\begin{aligned}
i[\hat{\tilde{p}}, \hat{\tilde{x}}] & =i[\hbar m \omega]^{-1 / 2}\left[\frac{\hbar}{m \omega}\right]^{-1 / 2}[\hat{p}, \hat{x}] \\
& =i\left[\hbar^{2}\right]^{-1 / 2}(-i \hbar)=+1
\end{aligned}
$$

So we were not quite successful in factoring \widehat{H}. We have to subtract $(1 / 2) \hbar \omega$:

$$
\widehat{H}=\hbar \omega\left(\widehat{\mathbf{a} \mathbf{a}^{\dagger}}-\underset{\substack{\text { left } \\ \text { over }}}{\frac{1}{2}}\right)
$$

This form for \widehat{H} is going to turn out to be very useful.

* Another trick, what about $\left[\hat{\mathbf{a}}, \hat{\mathbf{a}}^{\dagger}\right]=$?

$$
\begin{aligned}
{\left[\hat{\mathbf{a}}, \widehat{\mathbf{a}^{\dagger}}\right] } & =\left[2^{-1 / 2}(\dot{\tilde{p}}+\hat{\tilde{x}}), 2^{-1 / 2}(-i \hat{\tilde{p}}+\hat{\tilde{x}})\right]=\frac{i}{2}[\hat{\tilde{p}}, \hat{\tilde{x}}]+\frac{-i}{2}[\hat{\tilde{x}}, \hat{\tilde{p}}] \\
& =\frac{1}{2}+\frac{1}{2}=1 .
\end{aligned}
$$

So we have some nice results. $\hat{H}=\hbar \omega\left[\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}}+\frac{1}{2}\right]=\hbar \omega\left[\hat{\mathbf{a}} \hat{\mathbf{a}}^{\dagger}-\frac{1}{2}\right]$
3. Now we will derive some amazing results almost without ever looking at a wavefunction.

If ψ_{v} is an eigenfunction of \widehat{H} with energy E_{v}, then $\hat{\mathbf{a}}^{\dagger} \psi_{\mathrm{v}}$ is an eigenfunction of \widehat{H} belonging to eigenvalue $E_{v}+\hbar \omega$.

$$
\begin{aligned}
\widehat{H}\left(\widehat{\mathrm{a}}^{\dagger} \psi_{v}\right) & =\mathrm{h} \omega\left[\hat{\mathrm{a}}^{\dagger} \hat{\mathrm{a}}+\frac{1}{2}\right] \hat{\mathrm{a}}^{\dagger} \psi_{v} \\
& =\mathrm{h} \omega\left[\hat{\mathrm{a}}^{\dagger} \hat{\mathrm{a}} \hat{a}^{\dagger}+\frac{1}{2} \hat{\mathrm{a}}^{\dagger}\right] \psi_{v}
\end{aligned}
$$

$$
\begin{aligned}
& =\hat{\mathrm{a}}^{\dagger} h \omega\left[\hat{\mathrm{a}} \hat{a}^{\dagger}+\frac{1}{2}\right] \psi_{v} \\
\hat{\mathrm{a}}^{\dagger} \hat{\mathrm{a}}^{\dagger} & =\left[\hat{\mathrm{a}}, \hat{\mathrm{a}}^{\dagger}\right]+\hat{\mathrm{a}}^{\dagger} \hat{\mathrm{a}}=1+\hat{\mathrm{a}}^{\dagger} \hat{\mathrm{a}} \\
\widehat{H}\left(\hat{\mathrm{a}}^{\dagger} \psi_{v}\right) & =\hat{\mathrm{a}}^{\dagger} \mathrm{h} \omega\left[\hat{\mathrm{a}}^{\dagger} \hat{\mathrm{a}}+1+\frac{1}{2}\right] \psi_{v} \\
\text { and } \hat{H} \psi_{v} & =E_{v} \psi_{v}, \text { thus } \\
\widehat{H}\left(\hat{\mathrm{a}}^{\dagger} \psi_{v}\right) & =\hat{\mathrm{a}}^{\dagger}\left(E_{v}+\mathrm{h} \omega\right) \psi_{v}=\left(E_{v}+\mathrm{h} \omega\right)\left(\hat{\mathrm{a}}^{\dagger} \psi_{v}\right)
\end{aligned}
$$

Therefore $\hat{\mathbf{a}}^{\dagger} \psi_{\mathrm{v}}$ is eigenfunction of \widehat{H} with eigenvalue $E_{\mathrm{v}}+\hbar \omega$.
So every time we apply $\hat{\mathbf{a}}^{\dagger}$ to ψ_{v}, we get a new eigenfunction of \widehat{H} and a new eigenvalue increased by $\hbar \omega$ from the previous eigenfunction. $\hat{\mathbf{a}}^{\dagger}$ creates one quantum of vibrational excitation.

Similar result for $\hat{\mathbf{a}} \psi_{\mathrm{v}}$.

$$
\widehat{H}\left(\hat{\mathbf{a}} \psi_{v}\right)=\left(E_{\mathrm{v}}-\hbar \omega\right)\left(\hat{\mathbf{a}} \psi_{\mathrm{v}}\right) .
$$

$\hat{\mathbf{a}} \psi_{\mathrm{v}}$ is eigenfunction of \widehat{H} that belongs to eigenvalue $E_{\mathrm{v}}-\hbar \omega$. $\hat{\mathbf{a}}$ destroys one quantum of vibrational excitation.

We call $\hat{\mathbf{a}}^{\dagger}, \hat{\mathbf{a}}$ "ladder operators" or creation and annihilation operators (or step-up, step-down).

Now, suppose I apply â to ψ_{v} many times. We know there must be a lowest energy eigenstate for the harmonic oscillator because $E_{\mathrm{v}} \geq \mathrm{V}(0)$.

We have a ladder and we know there must be a lowest rung on the ladder. If we try to step below the lowest rung we get

$$
\begin{gathered}
\hat{\mathbf{a}} \psi_{\min }=0 \\
2^{-1 / 2}[\hat{\tilde{p}}+\tilde{\tilde{x}}] \psi_{\min }=0
\end{gathered}
$$

Now we bring \hat{x} and \hat{p} back.

$$
\begin{aligned}
& {\left[i(2 \hbar \mu \omega)^{-1 / 2} \hat{p}+\left(\frac{\mu \omega}{2 \hbar}\right)^{1 / 2} \hat{x}\right] \psi_{\min }=0} \\
& {\left[+\left(\frac{\hbar}{2 \mu \omega}\right)^{1 / 2} \frac{d}{d x}+\left(\frac{\mu \omega}{2 \hbar}\right)^{1 / 2} x\right] \psi_{\min }=0} \\
& \frac{d \psi_{\min }}{d x}=-\left(\frac{2 \mu \omega}{\hbar}\right)^{1 / 2}\left(\frac{\mu \omega}{2 \hbar}\right)^{1 / 2} x \psi_{\min } \\
& =-\frac{\mu \omega}{\hbar} x \psi_{\min }
\end{aligned}
$$

This is a first-order, linear, ordinary differential equation.
What kind of function has a first derivative that is equal to a negative constant times the variable times the function itself?

$$
\begin{aligned}
\frac{d e^{-c x^{2}}}{d x} & =-2 c x e^{-c x^{2}} \\
c & =\frac{\mu \omega}{2 \hbar} \\
\psi_{\min } & =N_{\min } e^{-\frac{\mu \omega}{2 \hbar} x^{2}} . \quad \text { (A Gaussian) }
\end{aligned}
$$

The lowest vibrational level has eigenfunction, $\psi_{\text {min }}(x)$, which is a simple Gaussian, centered at $x=0$, and with tails extending into the classically forbidden $E<V(x)$ regions.

Now normalize:

$$
\begin{array}{r}
\int_{-\infty}^{\infty} d x{\underset{\substack{\text { give factor of } \\
\text { 2 in exponent }}}{\psi_{\text {min }}^{*}} \psi_{\text {min }}^{*}}_{*}^{2} \underbrace{\int_{-\infty}^{\infty} d x e^{-\frac{\mu \omega}{\hbar} x^{2}}}_{\frac{\pi^{1 / 2}}{(\mu \omega / \hbar)^{1 / 2}}} \underset{\psi_{\min }(x)=\left(\frac{\mu \omega}{\pi \hbar}\right)^{1 / 4} e^{-\frac{\mu \omega}{2 \hbar} x^{2}}}{ }
\end{array}
$$

[recall asymptotic factor of $\psi(x): e^{-\xi^{2} / 2}$]
This is the lowest energy normalized wavefunction. It has zero nodes.

NON-LECTURE

Gaussian integrals

$$
\begin{aligned}
& \int_{0}^{\infty} d x e^{-r^{2} x^{2}}=\frac{\pi^{1 / 2}}{2 r} \\
& \int_{0}^{\infty} d x x e^{-r^{2} x^{2}}=\frac{1}{2 r^{2}} \\
& \int_{0}^{\infty} d x x^{2} e^{-r^{2} x^{2}}=\frac{\pi^{1 / 2}}{4 r^{3}} \\
& \int_{0}^{\infty} d x x^{2 n+1} e^{-r^{2} x^{2}}=\frac{n!}{2 r^{2 n+2}} \\
& \int_{0}^{\infty} d x x^{2 n} e^{-r^{2} x^{2}}=\pi^{1 / 2} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{n+1} r^{2 n+1}}
\end{aligned}
$$

By inspection, using dimensional analysis, all of these integrals seem OK.
We need to clean up a few loose ends.

1. Could there be several independent ladders built on linearly independent $\psi_{\text {min }_{1}}, \psi_{\text {min }_{2}}$?

Assertion: for any 1-D potential it is possible to show that the energy eigenfunctions are arranged so that the quantum numbers increase in step with the number of internal nodes.
particle in box $\mathrm{n}=1,2, \ldots$
\# nodes $=0,1, \ldots$, which translates into the general rule \# nodes $=\mathrm{n}-1$
harmonic oscillator $\quad v=0,1,2, \ldots$

$$
\# \text { nodes }=v
$$

We have found a $\psi_{\text {min }}$ that has zero nodes. It must be the lowest energy eigenstate. Call it $v=0$.
2. What is the lowest energy? We know that energy increases in steps of $\hbar \omega$.

$$
E_{v+n}-E_{v}=n \hbar \omega
$$

We get the energy of $\psi_{\min }$ by plugging $\psi_{\text {min }}$ into the Schrödinger equation. BUT WE USE A TRICK:

$$
\begin{aligned}
\widehat{H} & =\hbar \omega\left(\widehat{\mathbf{a}^{\dagger} \hat{\mathbf{a}}}+\frac{1}{2}\right) \\
\widehat{H} \psi_{\text {min }} & =\hbar \omega\left(\widehat{\mathbf{a}^{\dagger} \hat{\mathbf{a}}}+\frac{1}{2}\right) \psi_{\text {min }} \\
\text { but } \hat{\mathbf{a}} \psi_{\text {min }} & =0 \\
\text { so } \widehat{H} \psi_{\text {min }} & =\hbar \omega\left(0+\frac{1}{2}\right) \psi_{\text {min }} \\
E_{\text {min }} & =\frac{1}{2} \hbar \omega!
\end{aligned}
$$

Now we also know

$$
\begin{aligned}
& E_{\min +n}-E_{\min }=n \hbar \omega \\
& \quad \text { OR } \\
& \mathrm{E}_{0+v}-E_{0}=v \hbar \omega, \text { thus } E_{v}=\hbar \omega(v+1 / 2)
\end{aligned}
$$

NON-LECTURE
3. We know

$$
\begin{aligned}
& \hat{\mathbf{a}}^{\dagger} \psi_{\mathrm{v}}=c_{\mathrm{v}} \psi_{\mathrm{v}+1} \\
& \hat{\mathbf{a}} \psi_{\mathrm{v}}=d_{\mathrm{v}} \psi_{\mathrm{v}-1}
\end{aligned}
$$

what are c_{v} and d_{v} ?

$$
\begin{gathered}
\widehat{H}=\hbar \omega\left(\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}}+\frac{1}{2}\right)=\hbar \omega\left(\hat{\mathbf{a}} \hat{\mathbf{a}}^{\dagger}-\frac{1}{2}\right) \\
\frac{\widehat{H}}{\hbar \omega}-\frac{1}{2}=\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}}, \frac{\widehat{H}}{\hbar \omega}+\frac{1}{2}=\hat{\mathbf{a}} \hat{\mathbf{a}}^{\dagger} \\
\left(\frac{\widehat{H}}{\hbar \omega}-\frac{1}{2}\right) \psi_{v}=\left(v+\frac{1}{2}-\frac{1}{2}\right) \psi_{v}=\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} \psi_{v} \\
\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} \psi_{v}=v \psi_{v}
\end{gathered}
$$

$\hat{\mathbf{a}}^{\dagger}{ }^{\dagger}$ is "number operator", \widehat{N}.
for $\hat{a}^{\dagger}{ }^{\dagger}$ we use the trick

$$
\hat{\mathbf{a}}^{\hat{a}^{\dagger}}=\hat{\mathbf{a}}^{\dagger} \mathbf{a}+\underset{+1}{\left[\hat{\mathbf{a}}^{\hat{\mathbf{a}}} \hat{\mathbf{a}}^{\dagger}\right]}=\hat{N}+1
$$

Now $\int d x \psi_{v}^{*} \hat{a}^{\dagger}{ }^{\dagger} \boldsymbol{\psi}_{v}=\int d x\left|\hat{\mathbf{a}}^{\dagger} \psi_{v}\right|^{2}$ because $\hat{\mathbf{a}^{\dagger}}{ }^{\dagger}$ is Hermitian
Prescription for operating to the left is $\psi_{v}^{*} \hat{\mathbf{a}}=\left(\hat{\mathbf{a}}^{*} \psi_{v}\right)^{*}=\left(\mathbf{a}^{*} \psi_{v}\right)^{*}$

$$
\begin{aligned}
& \mathrm{V}+1=\left|c_{\mathrm{v}}\right|^{2} \\
& c_{\mathrm{v}}=[\mathrm{V}+1]^{1 / 2}
\end{aligned}
$$

similarly for d_{v} in $\hat{\mathbf{a}} \psi_{v}=d_{v} \Psi_{v-1}$

$$
\begin{gathered}
\int d x \psi_{v}^{*} \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} \psi_{v}=v \\
\int \mathrm{dx}\left|\hat{\mathbf{a}} \psi_{v}\right|^{2}=\left|d_{v}\right|^{2} \\
d_{v}=v^{1 / 2}
\end{gathered}
$$

Make phase choice and then verify by putting in \hat{x} and \hat{p}.

Again, verify phase choice

$$
\begin{aligned}
& \hat{\mathbf{a}}^{\dagger} \Psi_{v}=(v+1)^{1 / 2} \Psi_{v+1} \\
& \hat{\mathbf{a}} \psi_{v}=(v)^{1 / 2} \Psi_{v-1} \\
& \widehat{N}=\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} \\
& \widehat{N} \Psi_{v}=v \psi_{v} \\
& {\left[\hat{\mathbf{a}}, \hat{\mathbf{a}}^{\dagger}\right]=1}
\end{aligned}
$$

Now we are ready to exploit the $\widehat{\mathbf{a}^{\dagger}}, \hat{\mathbf{a}}$ operators.
Suppose we want to look at vibrational transition intensities.

$$
\mu(x)=\mu_{0}+\mu_{1} \hat{x}+\mu_{2} \dot{x}^{2} / 2+\ldots
$$

More generally, suppose we want to compute an integral involving some integer power of \hat{x} (or $\hat{p})$.
$\hat{\mathbf{a}}^{\dagger}=2^{-1 / 2}(-i \hat{\tilde{p}}+\hat{\tilde{x}})$
$\hat{\mathbf{a}}=2^{-1 / 2}(i \hat{\tilde{p}}+\hat{\tilde{x}})$
$\widehat{N}=\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} \quad$ (number operator)
$\hat{\tilde{x}}=2^{-1 / 2}\left(\hat{\mathbf{a}}^{\dagger}+\hat{\mathbf{a}}\right)$
$\hat{\tilde{p}}=2^{-1 / 2} i\left(\hat{\mathbf{a}}^{\dagger}-\hat{\mathbf{a}}\right)$
$\hat{x}=\left[\frac{\mu \omega}{\hbar}\right]^{-1 / 2} \hat{\tilde{x}}=\left[\frac{2 \mu \omega}{\hbar}\right]^{-1 / 2}\left(\hat{\mathbf{a}}^{\dagger}+\hat{\mathbf{a}}\right)$
$\hat{p}=[\hbar \mu \omega]^{1 / 2} \hat{\tilde{p}}=\left[\frac{\hbar \mu \omega}{2}\right]^{1 / 2} i\left(\hat{\mathbf{a}}^{\dagger}-\hat{\mathbf{a}}\right)$
$\widehat{x^{2}}=\frac{\hbar}{2 \mu \omega}\left(\hat{\mathbf{a}}^{\dagger}+\hat{\mathbf{a}}\right)\left(\hat{\mathbf{a}}^{\dagger}+\hat{\mathbf{a}}\right)=\frac{\hbar}{2 \mu \omega}\left[\hat{\mathbf{a}}^{\dagger 2}+\hat{\mathbf{a}}^{2}+\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}}+\hat{\mathbf{a}}_{\mathbf{a}^{\dagger}}\right]=\frac{\hbar}{2 \mu \omega}\left[\hat{\mathbf{a}}^{\dagger 2}+\hat{\mathbf{a}}^{2}+2 \hat{\mathbf{a}}^{\dagger} \mathbf{a}+1\right]$
$\widehat{p^{2}}=-\frac{\hbar \mu \omega}{2}\left(\hat{\mathbf{a}}^{\dagger 2}+\hat{\mathbf{a}}^{2}-\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}}-\hat{\mathbf{a}} \hat{\mathbf{a}}^{\dagger}\right)=\frac{-\hbar \mu \omega}{2}\left[\hat{\mathbf{a}}^{\dagger 2}+\hat{\mathbf{a}}^{2}-2 \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}}-1\right]$
etc.
$\widehat{H}=\frac{\widehat{p}^{2}}{2 \mu}+\frac{k}{2} \widehat{x}^{2}=-\frac{\hbar \omega}{4}\left(\hat{\mathbf{a}}^{\dagger 2}+\hat{\mathbf{a}}^{2}-2 \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}}-1\right)+\frac{\hbar \omega}{4}\left(\hat{\mathbf{a}}^{\dagger 2}+\hat{\mathbf{a}}^{2}+2 \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}}+1\right)=\hbar \omega\left(\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}}+1 / 2\right)$
as expected. The terms in \widehat{H} involving $\hat{\mathbf{a}}^{\dagger 2}+\hat{\mathbf{a}}^{2}$ exactly cancel out.
Look at an $\left(\hat{\mathbf{a}}^{\dagger}\right)^{m}(\hat{\mathbf{a}})^{n}$ operator and, from $m-n$, read off the selection rule for $\Delta \mathrm{v}$. Integral is not zero when the selection rule is satisfied.

MIT OpenCourseWare
https://ocw.mit.edu/

5.61 Physical Chemistry

Fall 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

