$$k(7) = \left(\frac{u}{2\pi h_{BT}}\right)^{3/2} \int_{0}^{\infty} v \sigma_{R}(v) e^{-4kv^{2}/h_{R}} \int_{0}^{\infty} \sqrt{12v^{2}} dv \quad (6-5a)$$

OK

$$k(T) = \sigma_o \left(\frac{8k_BT}{TM}\right)^{1/2} \left(1 - \left(\frac{1}{ak_BT+1}\right)^2\right)$$

()
$$\sigma_{\rm p}(\bar{\epsilon}) = \sigma_{\rm o}(1-e^{-a(e^{-E_{\rm o}})})$$
 ; $E_{\rm o} > 0$; un thereof thusbed

$$k(T) = \sigma_0 \left(\frac{e}{\pi \mu h_0 T}\right)^{1/2} = \frac{E_0/k_B T}{e} \left[\frac{E_0 + k_B T}{a \mu_0 T + 1} \left(\frac{E_0 + k_B T}{a \mu_0 T + 1}\right)\right]$$

Arrhendes like teapentare depudence.

Solve armuically of appropriate valves.

$$2.74 \times 10^{-19}$$
 1000
 1.86×10^{-17} 1500
 1.56×10^{-18} 2000

close to original value of ~ 100 hJ/mle for &o. Gorgh dunstrates Arrhurs behave, as expected from egn for k.

$$A = L \frac{f}{h} \frac{T}{R} \left(\frac{Q^{+}}{R_{reachels}} \right)$$
 $Low T \Rightarrow \left(\frac{Q^{+}}{R_{reachels}} \right) \frac{Q^{+}}{V_{ib}} \frac{Q^{+}}{V_{ib}}$
 $V_{ib} = V_{ib}$

/3

$$\left(\frac{Q^{\dagger}}{Q_{H}Q_{Hz}}\right)_{total} = \left(\frac{Q^{\dagger}}{Q_{H}Q_{Hz}}\right)_{tvan} \left(\frac{Q^{\dagger}}{Q_{Hz}}\right)_{rot} \left(\frac{Q^{\dagger}}{Q_{Hz}}\right)_{vib} \left(\frac{Q^{\dagger}}{Q_{H}Q_{Hz}}\right)_{zlec}.$$

Quis only texp. dependent quantity

@ 1000 1

$$A_{300K} = \pi \left(2.5 \times 10^{-10} \text{ m} \right)^{2} \left(8 h_{6} \cdot 300 \text{ k/} \right) \pi \left(1.11 \times 10^{-22} \text{ hg} \right)^{1/2}$$

$$= \left(6.05 \times 10^{-10} \text{ cm}^{3} \text{ s}^{-1} \right)$$

Ecollision-tury are much larger than k15T (~4x's)

> reaction every collision is not as accurate of a description

of the situation as the fordaments of transition-state

turory. <

(p.299)

(corrections can be boul on book pre calculated of an achimated us, the imaginary frequency of the transition state @ the top of the bourier. Quence - 1- 14 (hus) 2 (1+ 40T)

c) eld.

depending of Us you choose (method to calculation), you would get a correction factor between 1 and 5 for better 300 K and (000 K.

d) @ 30ck h ~ 7 x/04 L mole 15 - 2 ~1.20 x/0 to cm 5 -1

k~ 2 ×109 Lmole's' -> 1 3×10-12 cm35-1

These where are all in putty good agreement of calculated between using TST. Collision theory deviates a bit were but still not too for consider experimental meether that associated of these this reaction broad agreement -> 50 who is right?

(b) CKD 11.10

a) HNC: degrees of freedur

robtimal > 2

vibrational > 4 (3N-5)

translation > 3

9 TOTAL POF

9 toll DOF.

b)
$$Q^{\dagger} = \left(Q^{\dagger}_{\text{trans}}/V\right) \left(Q^{\dagger}_{\text{rot}}\right) \left(Q^{\dagger}_{\text{vib}}\right) \left(Q^{\dagger}_{\text{elec}}\right)$$
(1) (2) (3) (4)

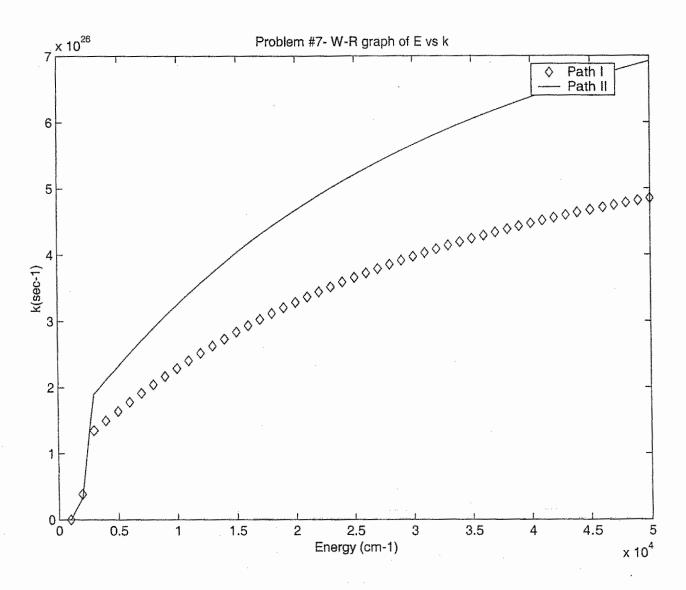
(1)
$$\left(2 T m k_B T\right)^{\frac{4}{12}} \sim 8.35 \times 10^{32} m^{-3}$$

(2)
$$\frac{\pi^{1/2}}{\sigma} \left(\frac{B\pi^2 k_B T}{h^2} \right)^{3/2} (f_X \cdot f_Y \cdot I_Z)^{1/2} \sim 5.32 \times 10^3$$

(3)
$$T = \frac{1}{1 - \exp(-hV_{ij}|_{k \in I})}$$
 $V_{i} = 1,000 \text{ cm}^{-1},2000 \text{ cm}^{-1},3000 \text{ cm}^{-1}$

7

P CK0 11.12


in) Good idea to use a program like MATLAS to do

The swipt used here is provided by Hoseifa Ismail.

hs ~ 405-1

pudated on the: EHCIDOD ~ 3 V

SCRIPT + RELEVANT PORTO TO POLLOW.


```
c:\huz\ken1.m
April 3, 2003
```

```
%huzeifa Ismail
%problem #7
clear;
h=6.6262*10^{-34};
c=3*10^10;
vil=[2940 2940 2940 2940 2160 1340 1340 1340 1340 1340 1270 1270 960 960 96
0 720 720 330 200];
vi2=[3000 3000 3000 2200 2200 1380 1380 1115 960 960 960 960 960 850 820 64✓
vi3=[3000 3000 3000 3000 2088 1380 1100 960 960 960 960 850 850 850 750 570⊌
 501];
tem1=c*vi1;
tem2=c*vi2;
tem3=c*vi3;
s1=18;
s2=17;
s3=17;
vi2_1=vi1.^2;
vi2_2=vi2.^2;
vi2_3=vi3.^2;
z=0;
for energy=50000:-1000:0
    sumvil=0;
    sumvi2_1=0;
    Ndenom1=1;
    for i=1:length(vi1)
        if(vil(i) <= energy)
             sumvil=sumvil+vil(i);
             sumvi2_1=sumvi2_1+vi2_1(i);
            Ndenom1=Ndenom1*vi1(i)*c;
        end
    end
    Ez1=sumvi1*c/2;
    beta1=((s1-1)/s1)*sumvi2_1/sumvi1^2;
    sumvi2=0;
    sumvi2_2=0;
    Gdenom2=1;
    for i=1:length(vi2)
        if(vi2(i) <= energy)
             sumvi2=sumvi2+vi2(i);
```

sumvi2_2=sumvi2_2+vi2_2(i);

```
Gdenom2=Gdenom2*vi2(i)*c;
        end
    end
    Ez2=sumvi2*c/2;
    beta2=((s2-1)/s2)*sumvi2_2/sumvi2^2;
    sumvi3=0;
    sumvi2 3=0;
    Gdenom3=1;
    for i=1:length(vi3)
        if(vi3(i)<=energy)
             sumvi3=sumvi3+vi3(i);
             sumvi2_3=sumvi2_3+vi2_3(i);
             Gdenom3=Gdenom3*vi3(i)*c;
        end
    end
    Ez3=sumvi3*c/2;
    beta3=((s3-1)/s3)*sumvi2_3/sumvi3^2;
    z=z+1:
    Ene(z)=energy*c;%*h;
    Eprimel(z) = Ene(z) / Ez1;
    Eprime2(z) = Ene(z) / Ez2;
    Eprime3(z)=Ene(z)/Ez3;
    if Eprimel(z) < 1
       w1=(1/(3.51+(5*Eprime1(z))+(2.73*Eprime1(z)^{.5})));
       dw1=-(5+(1.365/Eprime1(z)^{.5}))/((3.51+(2.73*Eprime1(z)^{.5})+(5*Eprime \checkmark))
1(z))^2;
   else
       w1=exp(-2.4191*Eprime1(z)^{2.25});
       dw1=-24191/40000/(Eprime1(z))^(3/4)/Ez1*exp(-24191/10000*(Eprime1(z))
)^{(1/4)};
   end
    if Eprime2(z) < 1
       w2=(1/(3.51+(5*Eprime2(z))+(2.73*Eprime2(z)^.5)));
   else
       w2 = \exp(-2.4191 \times \text{Eprime2}(z)^{2.25});
   end
   if Eprime3(z) < 1
       w3=(1/(3.51+(5*Eprime3(z))+(2.73*Eprime3(z)^5.5)));
   else
        w3 = \exp(-2.4191 \times \text{Eprime3}(z)^{2.25});
   end
   a1=1-beta1*w1;
   a2=1-beta2*w2;
   a3=1-beta3*w3;
```

```
c:\huz\ken1.m
April 3, 2003
```

Page 3 8:37;55 PM

```
 N1(z) = (((Ene(z) + a1*Ez1)^{(s1-1)})/Ndenom1)*(1-beta1*dw1); \\ G2(z) = ((Ene(z) + a2*Ez2)^{s2})/Gdenom2; \\ G3(z) = ((Ene(z) + a3*Ez3)^{s3})/Gdenom3; \\ K1(z) = G2(z)/N1(z); \\ K2(z) = G3(z)/N1(z); \\ end \\ E = [50000:-1000:0]; \\ plot(E, K1,'d'); \\ hold on; \\ plot(E, K2);
```

Continued on next page....

```
%huzeifa ismail
%prob 7b
kb=1.381e-23;
h=6.626e-34;
c = 3e10;
T=1000;
g=[4 1 4 2 3 2 1 1];
v=[2940 2160 1340 1270 960 720 330 200];
E0=232.7e3/6.022e23;
TS_g=[3 \ 2 \ 2 \ 1 \ 5 \ 1 \ 1 \ 1 \ 1];
TS_v=[3000 2200 1380 1115 960 850 820 645 403];
E02=237.9e3/6.022e23;
TS2_g=[4 1 1 1 4 3 1 1 1];
TS2_v=[3000 2088 1380 1100 960 850 750 570 501];
k1=0.33/0.25*kb*T/h*exp(-E0/(kb*T))*(prod(g.*(1-exp(-h*c*v/(kb*T)))))/prod(T/
S_{g.*}(1-\exp(-h*c*TS_v/(kb*T))));
k2=0.33/0.497*kb*T/h*exp(-E02/(kb*T))*(prod(g.*(1-exp(-h*c*v/(kb*T)))))/prod~
(TS2_g.*(1-exp(-h*c*TS2_v/(kb*T)))));
k=k1+k2
Ratio=k1/k2
```

(Continued on next page

(3

PROBLEM 3. GASSIAN COLLCULATION

(The following solution is provided by Journa Yu.)

The rates for the forward of nurse rxus are a bit large,
but the ratio looks ok.

Set up a spreadsheet at get the value from Graves in mto a wodable user-friendly formal.

Do the calculations for the partition functions and you can get look.

17

10.652 PS#4 Exercise 3 a)

T (K)				CH ₃			C₂H₄			TS			CH₃CH₂CH₂		
300			m (kg)	2.49E-26			4.65E-26			7.14E-26			7.14E-26		
			rotational con	285,28	284.86	142,53	1.47E+02	30.05	24.95	2.78E+01	6.06	5,54	31.26	8,79	7.90
LTS	2		$\theta_{rot}(K)$	136.88	136.67	68,39	7.05E+01	14.42	11.97	13.32	2.91	2.66	15.00	4.22	3.79
-10	forward	backward	E (hartree)	-39.84			-78.59			-118.42			-118.47		
EF ₀ (kJ/m	0 27.68	126.01	Eo (kJ/mol)	-1.04E+05			-2.06E+05			-3.10E+05			-3.11E+05		
EF ₀ /R (K)	3.33E+03	1.52E+04	q _{vib}			0.000			4.03E-24			1.51E-38			0.000
				ν (cm-1)	θ _{νЪ}	q _{vib}	v (cm-1)	θ _{vib}	q _{vib}	v (cm-1)	θ _{vib}	q _{vib}	v (cm-1)	θ _{vib}	q _{vib}
				454.42	653.63	0,38	834.59	1200.46	0.14	-375.62	-540.29	-0.49	77.97	112.15	2.66
				1430.80	2058.04	0.03	955.62	1374.55	0.10	91.17	131.14	2.27	254.65	366.28	0.77
Translatio	onal			1431.87	2059,58	0.03	975.37	1402.96	0,10	216.48	311.38	0.92	334.95	481.79	0.56
	forward	backward	'	3142,26	4519.7B	0.00	1069.50	1538,35	0.08	346.16	497.91	0.54	522.65	751.77	0,31
Q _{trans} (m ³)) 3,353E-32	1,000E+00		3316,34	4770.17	0.00	1247.83	1794.85	0.05	476,45	685.32	0.36	753.10	1083.24	0.17
Q _{trans} (m ³)) 1.742E-28	1.000E+00		3317.21	4771.42	0.00	1396,01	2008.00	0.04	495.85	713.23	0.34	899.88	1294.37	0.12
-uais (···)							1494.29	2149.36	0.03	782.24	1125.16	0.16	901.50	1296.70	0.12
Rotationa	al .						1720.82	2475.20	0.02	826.02	1188.13	0.14	1034.49	1488.00	0.08
	forward	backward	•				3154.24	4537.00	0.00	866.40	1246,21	0.13	1104.82	1589.16	0.07
Q _{rat}	1,643E+04	6.550E-01				i	3169.01	4558.25	0.00	944.47	1358.51	0.11	1209.31	1739.46	0.06
Q _{ret}	8,539E+07	6.550E-01					3223.92	4637.24	0.00	1026.45	1476,43	0.09	1323.25	1903.34	0.04
							3249.45	4673.96	0.00	1247.65	1794.60	0.05	1343.94	1933,11	0.04
Vibrationa	al									1326,26	1907.67	0.04	1426.02	2051.17	0.03
	forward	backward								1446.16	2080.13	0.03	1491,96	2146,00	0.03
Qvab	0.142	98.529								1451.78	2088,22	0.03	1514.68	2178.70	0.03
**										1488,87	2141.56	0.03	1524.92	2193.43	0.03
Electronic										1616,31	2324.87	0.02	1536.91	2210,66	0.03
Q _{aloc}	1									3123.43	4492.69	0.00	3025,42	4351.71	0.00
0.00										3158.37	4542.95	0.00	3043.78	4378.13	0.00
	forward	backward)	2 1. 0	<u></u>						3168.03	4556,85	0.00	3060.84	4402.66	0.00
A	9.772E-16	€.035E±14	-> 90001	_						3230,33	4646.45	0.00	3111.75	4475.89	0.00
k (m³/s)	1.49E-20	4.70E-08.	relation-ry							3255.70	4682,94	0.00	3120.62	4488.64	0.00
k (cm ³ /s)	1.49E-14	4.70E-02	1-7 A B	IT LA	RGE,	BUTR	170 1	41500	T KIGHT	3277.51	4714.32	0.00	3160.23	4545.63	0.00
									. ,,,	3288.94	4730.76	0.00	3256.75	4684.46	0,00
Literature	forward	backward		Source		Data ty	pe								-
k (cm ³ /s)	1.54E-18		300-600	Baulch, D.L et	al.	Extensiv	e literature r	eview							
k (cm ³ /s)	1.33E-18		300-2500	Tsang, W.; Ha	mpson, R.F	Extensiv	<i>r</i> e literature r	eview							
k (s ⁻¹)		1.20E-09	300-2500	Tsang, W.		Extensiv	e literature r	eview							
, ,		9.05E-10	300-800	Tsang, W.		Derived	from detailed	l balance/re	everse rate						

