MASSACHUSETTS INSTITUTE OF TECHNOLOGY

5.73 Quantum Mechanics I Fall, 2002

Professor Robert W. Field

Problem Set #9

DUE: At the start of Lecture on Friday, November 22.

Reading: Angular Momentum Handouts C-TDL, pages 999-1024, 1027-1034, 1035-1042

Spherical components of a vector operator

$$\begin{aligned} \mathbf{V}_{\pm 1} &= \mp 2^{-1/2} \Big[\mathbf{V}_{\mathrm{x}} \pm \mathrm{i} \mathbf{V}_{\mathrm{y}} \Big] \\ \mathbf{V}_{\mathrm{0}} &= \mathbf{V}_{\mathrm{z}} \end{aligned}$$

Scalar product of two vector operators

$$\mathbf{V}\Sigma\mathbf{W} = \sum_{\mu} (-1)^{\mu} \mathbf{V}_{-\mu} \mathbf{W}_{\mu} \,.$$

Scalar product of two tensor operators

$$T_0^{(0)}[A_1, A_2] = \sum_{\mu} (-1)^{\mu} T_{\mu}^{(\omega)}[A_1] T_{\pm \mu}^{(\omega)}[A_2].$$

Problems:

- 1. CTDL, page 1086, #2.
- 2. CTDL, page 1089, #7.
- 3. CTDL, page 1089, #8.
- 4. A. d orbitals are often labeled xy, xz, yz, z^2 , x^2-y^2 . These labels are Cartesian tensor components. Find the linear combinations of binary products of x, y, and z that may be labeled as $T_{+2}^{(2)}$ and $T_0^{(2)}$.
 - B. There is a powerful formula for constructing an operator of any desired $T_{M}^{(\Omega)}$ spherical tensor character from products of components of other operators

$$T_{M}^{(\Omega)}[A_{1}, A_{2}] = \sum_{\mu_{1}} A_{\mu_{1}, M-\mu_{1}, M}^{\omega_{1}\omega_{2}\Omega} T_{\mu_{1}}^{(\omega_{1})}[A_{1}]T_{M-\mu_{1}}^{(\omega_{2})}[A_{2}]$$

where A is a Wigner or Clebsch-Gordan coefficient, which is related to 3-j coefficients as follows:

$$\begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \equiv -(m_1 + m_2) \end{pmatrix} = (-1)^{j_1 - j_2 - m_3} (2j_3 + 1)^{-1/2} A_{M_1M_2 - M_3}^{j_1 j_2 j_3} .$$

Use the $T_M^{(\Omega)}$ [A₁,A₂] formula to construct the spherical tensor $T_{+2}^{(3)}$ and $T_0^{(3)}$ components of f orbitals by combining products of linear combinations of Cartesian labeled d and p orbitals. In other words, combine $T^{(2)}$ [x,y,z] with $T^{(1)}$ [x,y,z] to obtain $T_M^{(3)}$ as a linear combination of products of 3 Cartesian components.

5. <u>Angular Momenta</u>

Consider a two-electron atom in the "electronic configuration" 3d4p. The electronic states that belong to this configuration are ${}^{3}F$, ${}^{1}F$, ${}^{3}D$, ${}^{1}D$, ${}^{3}P$, and ${}^{1}P$. There are $(2\ell_{1} + 1)(2\ell_{2} + 1)(2s_{1} + 1)(2s_{2} + 1) = 60$ spin-orbital occupancies associated with this configuration. I am going to ask you to solve several angular momentum coupling problems, using 3-j coefficients and the Wigner-Eckart Theorem for states belonging to this configuration. However, I do not expect you to consider the anti-symmetrization requirement that is the subject of lectures #30 - 36.

Spin-orbitals in the uncoupled basis set are denoted by $n\ell m_{\ell} sm_s(i)$ where *n* is the principal quantum number and *i* specifies the name of the assumed-distinguishable electron. Since s = 1/2 for all electrons, we can use an abbreviated notation for spin-orbitals: $\ell \lambda \alpha / \beta$ where α corresponds to $m_s = +1/2$ and β to $m_s = -1/2$. The two-electron basis states are denoted $|\ell_1\lambda_1(\alpha/\beta)_1\ell_2\lambda_2(\alpha/\beta)_2\rangle$, e.g. $|3-1\alpha \ 2-1\beta\rangle$ where the first three symbols are associated with e⁻ #1 and the second three with e⁻ #2.

The many-electron quantum numbers L, M_L , S, M_S are related to the one-electron spin-orbital quantum numbers by

$$M_{\rm L} = \sum_{i} \lambda_{i}$$
$$M_{\rm S} = \sum_{i} \sigma_{i}$$

and L and S must be constructed from the proper linear combination of spin-orbital basis states. For example,

$$|{}^{3}F, M_{L} = 4, M_{S} = 1\rangle = |33\alpha |11\alpha\rangle$$

This is a problem of coupled ↔ uncoupled transformation,

$$\left|L\ell_{1}\ell_{2}M_{L}\right\rangle = \sum_{\lambda_{2}} \left|\ell_{1}\lambda_{1}\ell_{2}\lambda_{2}\right\rangle \left\langle\ell_{1}\lambda_{1}\ell_{2}\lambda_{2}\left|L\ell_{1}\ell_{2}M_{L}\right\rangle\right.$$

where $M_L = \lambda_1 + \lambda_2$ and $\ell_2 \leq \ell_1$. The same situation obtains for the spin part

$$\left| Ss_{1}s_{2}M_{s} \right\rangle = \sum_{\sigma_{2}} \left| s_{1}\sigma_{1}s_{2}\sigma_{2} \right\rangle \! \left\langle s_{1}\sigma_{1}s_{2}\sigma_{2} \left| Ss_{1}s_{2}M_{S} \right\rangle \right.$$

A. Use 3-j coefficients to derive the linear combination of six spin-orbital occupancies that corresponds to the $|{}^{3}P_{0}M_{j}=0\rangle$ state. The six basis states are $|3-1\alpha 11\beta\rangle$, $|3-1\beta 11\alpha\rangle$, $|30\alpha 10\beta\rangle$, $|30\beta 10\alpha\rangle$, $|31\alpha 1-1\beta\rangle$, and $|31\beta 1-1\alpha\rangle$. Note that you will have to perform three uncoupled \rightarrow coupled transformations:

$$\ell_1\lambda_1\;\ell_1\lambda_1\to L\;\ell_1\;\ell_2M_L$$

 $s_1\sigma_1s_2\sigma_2 \rightarrow S \; s_1s_2M_S$

and

$$LM_LSM_S \rightarrow JLSM_J$$
.

I advise against using ladders plus orthogonality to solve this problem because $M_J = 0$ is the worst possible situation for this method.

B. The atom in question has a nonzero nuclear spin, I = 5/2. This means that you will eventually have to perform one more uncoupled to coupled transformation:

$$\vec{\mathbf{F}} = \vec{\mathbf{I}} + \vec{\mathbf{J}}$$
$$\left| \mathbf{J}\mathbf{M}_{\mathbf{J}}\mathbf{I}\mathbf{M}_{\mathbf{I}} \right\rangle \rightarrow \left| \mathbf{F}\mathbf{J}\mathbf{I}\mathbf{M}_{\mathbf{F}} \right\rangle$$

The nuclear spin gives rise to "Fermi-contact" and magnetic dipole hyperfine structure. The hyperfine Hamiltonian is

$$\mathbf{H}^{\rm hf} = \sum \left(a_{\rm i} \mathbf{s}_{\rm i} \sum \mathbf{I} + b_{\rm i} \boldsymbol{\ell}_{\rm i} \sum \mathbf{I} \right)$$

The $\Delta F = \Delta J = \Delta L = \Delta S = \Delta I = 0$ special form for the Wigner-Eckart theorem for vector operators may be used to replace the above "microscopic" form of \mathbf{H}^{hf} by a more convenient, but restricted, form

$$\mathbf{H}^{hf} = \mathbf{c}_{II,S} \mathbf{J} \bullet \mathbf{I}$$

because the microscopic \mathbf{H}^{hf} contains $\sum_{i} a_i \mathbf{s}_i$ and $\sum_{i} b_i \ell_i$, both of which are vectors with respect to J.

$$\mathbf{H}^{\text{ef}} = \sum (\mathbf{a}_{i}\mathbf{s}_{i} + \mathbf{b}_{i}\boldsymbol{\ell}_{i})\boldsymbol{\Sigma}\mathbf{I}$$
$$= c_{JLS}\mathbf{J}\boldsymbol{\Sigma}\mathbf{I}$$

where c_{ILS} is a reduced matrix element evaluated in the $|JLSM_I\rangle$ basis set

$$c_{JLS} = \left\langle JLS \left\| \sum_{i} \left(a_{i} s_{i} + b_{i} \ell_{i} \right) \right\| JLS \right\rangle$$

where

$$c_{JLS} = \left\langle JLSM_{J} \middle| \sum_{i} \left(a_{i} \mathbf{s}_{i} + b_{i} \ell_{i} \right) \middle| JLSM_{J}' \right\rangle = c_{JLS} \left\langle JLSM_{J} \mid J \mid JLSM_{J}' \right\rangle.$$

 c_{JLS} is a constant that depends on each of the magnitude quantum numbers J, L, and S (but not F and I). I will review this derivation and show you how to evaluate the J, L, S dependence of c_{JLS} in a handout.

Similarly, the spin-orbit Hamiltonian

$$\mathbf{H}^{\rm SO} = \sum \zeta(\mathbf{r}_i) \boldsymbol{\ell}_i \sum \mathbf{s}_i$$

may be replaced by the $\Delta L = 0$, $\Delta S = 0$ restricted form,

$$\mathbf{H}^{\rm SO} = \zeta_{\rm LS} \mathbf{L} \bullet \mathbf{S}.$$

The purpose of this problem is to show that all of the fine (spin-orbit) and hyperfine structure for all of the states of the 3d4p configuration can be related to the fundamental one-electron coupling constants: a_{3d} , a_{4p} , b_{3d} , b_{4p} , ζ_{3d} , and ζ_{4p} .

Derive simple formulas for the hyperfine and fine structure for all $|FJLSIM_F\rangle$ states of the 3d4p configuration (consistent with neglect of $\Delta L \neq 0$, $\Delta S \neq 0$ matrix elements).

C. The six L–S states that arise from the 3d4p electronic configuration split into 12 finestructure J-components and, in turn, into 54 hyperfine F-components. The eigenenergies are given (neglecting off-diagonal matrix elements between widely separated J-L-S fine structure components) by c_{JLS} J•I and, alternatively, by matrix elements of the microscopic forms of the H^{hf} (and H^{SO}) operators evaluated in the explicit product-ofspin-orbitals basis set. The set of 12 { c_{JLS} } can be related to four of the six fundamental coupling constants listed at the end of part B. There are several tricks for expressing many-electron reduced matrix elements in terms of one-electron reduced matrix elements. One trick is to start with "extreme states". Another is to exploit a matrix element sum rule based on the trace invariance of matrix representations of H. For H^{SO} use ${}^{3}F_{4}$ M_J = 4 to get $\zeta_{3_{F}}$, ${}^{3}P_{0}$ M_J = 0 (your answer to part A) to get $\zeta_{3_{P}}$, and (if you are brave: <u>optional</u>) the sum rule for J = 3, M_J = 3 to get $\zeta_{3_{D}}$. For H^{hf} consider only ${}^{3}F_{4}$ M_F = (4+5/2) and (if you are brave: <u>optional</u>) ${}^{1}F_{3}$ M_F = (3 + 5/2).