MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 5.73 Quantum Mechanics I
 Fall, 2002

Professor Robert W. Field

Problem Set \#9

DUE: \quad At the start of Lecture on Friday, November 22.
Reading: Angular Momentum Handouts
C-TDL, pages 999-1024, 1027-1034, 1035-1042

Spherical components of a vector operator

$$
\begin{aligned}
& \mathrm{V}_{ \pm 1}=\mp 2^{-1 / 2}\left[\mathrm{~V}_{\mathrm{x}} \pm \mathrm{i} \mathrm{~V}_{\mathrm{y}}\right] \\
& \mathrm{V}_{0}=\mathrm{V}_{\mathrm{z}}
\end{aligned}
$$

Scalar product of two vector operators

$$
\mathrm{V} \sum \mathrm{~W}=\sum_{\mu}(-1)^{\mu} \mathrm{V}_{-\mu} \mathrm{W}_{\mu}
$$

Scalar product of two tensor operators

$$
\mathrm{T}_{0}^{(0)}\left[\mathrm{A}_{1}, \mathrm{~A}_{2}\right]=\sum_{\mu}(-1)^{\mu} \mathrm{T}_{\mu}^{(\omega)}\left[\mathrm{A}_{1}\right] \mathrm{T}_{ \pm \mu}^{(\omega)}\left[\mathrm{A}_{2}\right]
$$

Problems:

1. CTDL, page 1086, \#2.
2. CTDL, page 1089, \#7.
3. CTDL, page 1089, \#8.
4. A. d orbitals are often labeled $x y, x z, y z, z^{2}, x^{2}-y^{2}$. These labels are Cartesian tensor components. Find the linear combinations of binary products of x, y, and z that may be labeled as $\mathrm{T}_{+2}^{(2)}$ and $\mathrm{T}_{0}^{(2)}$.
B. There is a powerful formula for constructing an operator of any desired $T_{M}^{(\Omega)}$ spherical tensor character from products of components of other operators

$$
\mathrm{T}_{\mathrm{M}}^{(\Omega)}\left[\mathrm{A}_{1}, \mathrm{~A}_{2}\right]=\sum_{\mu_{1}} \mathrm{~A}_{\mu_{1}, \mathrm{M}-\mu_{1}, \mathrm{M}}^{\omega_{1} \omega_{2} \Omega} \mathrm{~T}_{\mu_{1}}^{\left(\omega_{1}\right)}\left[\mathrm{A}_{1}\right] \mathrm{T}_{\mathrm{M}-\mu_{1}}^{\left(\omega_{2}\right)}\left[\mathrm{A}_{2}\right]
$$

where A is a Wigner or Clebsch-Gordan coefficient, which is related to 3-j coefficients as follows:

$$
\left(\begin{array}{ccc}
\mathrm{j}_{1} & \mathrm{j}_{2} & \mathrm{j}_{3} \\
\mathrm{~m}_{1} & \mathrm{~m}_{2} & \mathrm{~m}_{3} \equiv-\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)
\end{array}\right)=(-1)^{\mathrm{j}_{1}-\mathrm{j}_{2}-\mathrm{m}_{3}}\left(2 \mathrm{j}_{3}+1\right)^{-1 / 2} \mathrm{~A}_{\mathrm{M}_{1} \mathrm{~m}_{2}-\mathrm{m}_{2} \mathrm{~m}_{3}}^{\mathrm{m}_{3}} .
$$

Use the $\mathrm{T}_{\mathrm{M}}^{(\Omega)}\left[\mathrm{A}_{1}, \mathrm{~A}_{2}\right]$ formula to construct the spherical tensor $\mathrm{T}_{+2}^{(3)}$ and $\mathrm{T}_{0}^{(3)}$ components of f orbitals by combining products of linear combinations of Cartesian labeled d and p orbitals. In other words, combine $T^{(2)}[x, y, z]$ with $T^{(1)}[x, y, z]$ to obtain $T_{M}^{(3)}$ as a linear combination of products of 3 Cartesian components.

5. Angular Momenta

Consider a two-electron atom in the "electronic configuration" 3 d 4 p. The electronic states that belong to this configuration are ${ }^{3} \mathrm{~F},{ }^{1} \mathrm{~F},{ }^{3} \mathrm{D},{ }^{1} \mathrm{D},{ }^{3} \mathrm{P}$, and ${ }^{1} \mathrm{P}$. There are $\left(2 \ell_{1}+1\right)\left(2 \ell_{2}+1\right)\left(2 \mathrm{~s}_{1}+1\right)$ $\left(2 s_{2}+1\right)=60$ spin-orbital occupancies associated with this configuration. I am going to ask you to solve several angular momentum coupling problems, using 3 -j coefficients and the WignerEckart Theorem for states belonging to this configuration. However, I do not expect you to consider the anti-symmetrization requirement that is the subject of lectures \#30-36.

Spin-orbitals in the uncoupled basis set are denoted by $n \ell \mathrm{~m}_{\ell} \mathrm{sm}_{\mathrm{s}}(i)$ where n is the principal quantum number and i specifies the name of the assumed-distinguishable electron. Since $s=1 / 2$ for all electrons, we can use an abbreviated notation for spin-orbitals: $\ell \lambda \alpha / \beta$ where α corresponds to $\mathrm{m}_{\mathrm{s}}=+1 / 2$ and β to $\mathrm{m}_{\mathrm{s}}=-1 / 2$. The two-electron basis states are denoted $\left|\ell_{1} \lambda_{1}(\alpha / \beta)_{1} \ell_{2} \lambda_{2}(\alpha / \beta)_{2}\right\rangle$, e.g. $|3-1 \alpha 2-1 \beta\rangle$ where the first three symbols are associated with e^{-} $\# 1$ and the second three with $\mathrm{e}^{-} \# 2$.

The many-electron quantum numbers $\mathrm{L}, \mathrm{M}_{\mathrm{L}}, \mathrm{S}, \mathrm{M}_{\mathrm{S}}$ are related to the one-electron spin-orbital quantum numbers by

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{L}}=\sum_{\mathrm{i}} \lambda_{\mathrm{i}} \\
& \mathrm{M}_{\mathrm{S}}=\sum_{\mathrm{i}} \sigma_{\mathrm{i}}
\end{aligned}
$$

and L and S must be constructed from the proper linear combination of spin-orbital basis states. For example,

$$
\left|{ }^{3} \mathrm{~F}, \mathrm{M}_{\mathrm{L}}=4, \mathrm{M}_{\mathrm{S}}=1\right\rangle=\left\lvert\, \begin{array}{ll}
33 \alpha & 11 \alpha\rangle
\end{array}\right.
$$

This is a problem of coupled \leftrightarrow uncoupled transformation,

$$
\left|\mathrm{L} \ell_{1} \ell_{2} \mathrm{M}_{\mathrm{L}}\right\rangle=\sum_{\lambda_{2}}\left|\ell_{1} \lambda_{1} \ell_{2} \lambda_{2}\right\rangle\left\langle\ell_{1} \lambda_{1} \ell_{2} \lambda_{2} \mid \mathrm{L} \ell_{1} \ell_{2} \mathrm{M}_{\mathrm{L}}\right\rangle
$$

where $\mathrm{M}_{\mathrm{L}}=\lambda_{1}+\lambda_{2}$ and $\ell_{2} \leq \ell_{1}$. The same situation obtains for the spin part

$$
\left|\mathrm{Ss}_{1} \mathrm{~s}_{2} \mathrm{M}_{\mathrm{s}}\right\rangle=\sum_{\sigma_{2}}\left|\mathrm{~s}_{1} \sigma_{1} \mathrm{~s}_{2} \sigma_{2}\right\rangle\left\langle\mathrm{s}_{1} \sigma_{1} \mathrm{~s}_{2} \sigma_{2} \mid \mathrm{Ss}_{1} \mathrm{~s}_{2} \mathrm{M}_{\mathrm{S}}\right\rangle
$$

A. Use 3-j coefficients to derive the linear combination of six spin-orbital occupancies that corresponds to the $\left|{ }^{3} \mathrm{P}_{0} \mathrm{M}_{\mathrm{J}}=0\right\rangle$ state. The six basis states are $|3-1 \alpha 11 \beta\rangle,|3-1 \beta 11 \alpha\rangle$, $|30 \alpha 10 \beta\rangle,|30 \beta 10 \alpha\rangle,|31 \alpha 1-1 \beta\rangle$, and $|31 \beta 1-1 \alpha\rangle$. Note that you will have to perform three uncoupled \rightarrow coupled transformations:

$$
\begin{aligned}
& \ell_{1} \lambda_{1} \ell_{1} \lambda_{1} \rightarrow \mathrm{~L} \ell_{1} \ell_{2} \mathrm{M}_{\mathrm{L}} \\
& \mathrm{~s}_{1} \sigma_{1} \mathrm{~s}_{2} \sigma_{2} \rightarrow \mathrm{~S} \mathrm{~s}_{1} \mathrm{~s}_{2} \mathrm{M}_{\mathrm{S}}
\end{aligned}
$$

and

$$
\mathrm{LM}_{\mathrm{L}} \mathrm{SM}_{\mathrm{S}} \rightarrow \mathrm{JLSM}_{\mathrm{J}}
$$

I advise against using ladders plus orthogonality to solve this problem because $M_{J}=0$ is the worst possible situation for this method.
B. The atom in question has a nonzero nuclear spin, $I=5 / 2$. This means that you will eventually have to perform one more uncoupled to coupled transformation:

$$
\begin{gathered}
\overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{I}}+\overrightarrow{\mathbf{J}} \\
\left|\mathrm{JM}_{\mathrm{J}} \mathrm{IM}_{\mathrm{I}}\right\rangle \rightarrow\left|\mathrm{FJIM}_{\mathrm{F}}\right\rangle .
\end{gathered}
$$

The nuclear spin gives rise to "Fermi-contact" and magnetic dipole hyperfine structure. The hyperfine Hamiltonian is

$$
\mathbf{H}^{\mathrm{hf}}=\sum\left(\mathrm{a}_{\mathrm{i}} \mathbf{s}_{\mathrm{i}} \sum \mathbf{I}+\mathrm{b}_{\mathrm{i}} \ell_{\mathrm{i}} \sum \mathbf{I}\right)
$$

The $\Delta \mathrm{F}=\Delta \mathrm{J}=\Delta \mathrm{L}=\Delta \mathrm{S}=\Delta \mathrm{I}=0$ special form for the Wigner-Eckart theorem for vector operators may be used to replace the above "microscopic" form of $\mathbf{H}^{\text {hf }}$ by a more convenient, but restricted, form

$$
\mathbf{H}^{\mathrm{hf}}=\mathrm{c}_{\mathrm{JLS}} \mathbf{J} \cdot \mathbf{I}
$$

because the microscopic $\mathbf{H}^{\text {hf }}$ contains $\sum_{i} a_{i} \mathbf{s}_{i}$ and $\sum_{i} b_{i} \ell_{i}$, both of which are vectors with respect to \mathbf{J}.

$$
\begin{aligned}
\mathbf{H}^{\mathrm{ef}} & =\sum\left(\mathrm{a}_{\mathrm{i}} \mathbf{s}_{\mathrm{i}}+\mathrm{b}_{\mathrm{i}} \boldsymbol{\ell}_{\mathrm{i}}\right) \sum \mathbf{I} \\
& =\mathrm{c}_{\mathrm{JLS}} \mathbf{J} \sum \mathbf{I}
\end{aligned}
$$

where $c_{\text {JLS }}$ is a reduced matrix element evaluated in the $\left|\mathrm{JLSM}_{\mathrm{J}}\right\rangle$ basis set

$$
\mathrm{c}_{\mathrm{JLS}}=\left\langle\mathrm{JLS}\left\|\sum_{\mathrm{i}}\left(\mathrm{a}_{\mathrm{i}} \mathbf{s}_{\mathrm{i}}+\mathrm{b}_{\mathrm{i}} \ell_{\mathrm{i}}\right)\right\| \mathrm{JLS}\right\rangle
$$

where

$$
\mathrm{c}_{\mathrm{JLS}}=\left\langle\mathrm{JLSM}_{\mathrm{J}}\right| \sum_{\mathrm{i}}\left(\mathrm{a}_{\mathrm{i}} \mathbf{s}_{\mathrm{i}}+\mathrm{b}_{\mathrm{i}} \ell_{\mathrm{i}}\right)\left|\mathrm{JLSM}_{\mathrm{J}}^{\prime}\right\rangle=\mathrm{c}_{\mathrm{JLS}}\left\langle\mathrm{JLSM}_{\mathrm{J}}\right| \mathrm{J}\left|\mathrm{JLSM}_{\mathrm{J}}^{\prime}\right\rangle .
$$

$\mathrm{C}_{\mathrm{JLS}}$ is a constant that depends on each of the magnitude quantum numbers J, L, and S (but not F and I). I will review this derivation and show you how to evaluate the J, L, S dependence of $\mathrm{c}_{\mathrm{JLS}}$ in a handout.

Similarly, the spin-orbit Hamiltonian

$$
\mathbf{H}^{\mathrm{SO}}=\sum \zeta\left(\mathrm{r}_{\mathrm{i}}\right) \ell_{\mathrm{i}} \sum \mathbf{s}_{\mathrm{i}}
$$

may be replaced by the $\Delta \mathrm{L}=0, \Delta \mathrm{~S}=0$ restricted form,

$$
\mathbf{H}^{\mathrm{SO}}=\zeta_{\mathrm{LS}} \mathbf{L} \bullet \mathbf{S}
$$

The purpose of this problem is to show that all of the fine (spin-orbit) and hyperfine structure for all of the states of the 3 d 4 p configuration can be related to the fundamental one-electron coupling constants: $a_{3 d}, a_{4 p}, b_{3 d}, b_{4 p}, \zeta_{3 d}$, and $\zeta_{4 p}$.

Derive simple formulas for the hyperfine and fine structure for all $\left|\mathrm{FJLSIM}_{\mathrm{F}}\right\rangle$ states of the 3 d 4 p configuration (consistent with neglect of $\Delta \mathrm{L} \neq 0, \Delta \mathrm{~S} \neq 0$ matrix elements).
C. The six $L-S$ states that arise from the $3 d 4$ p electronic configuration split into 12 finestructure J-components and, in turn, into 54 hyperfine F-components. The eigenenergies are given (neglecting off-diagonal matrix elements between widely separated J-L-S fine structure components) by $c_{\mathrm{JLS}} \mathrm{J} \bullet \mathrm{I}$ and, alternatively, by matrix elements of the microscopic forms of the \mathbf{H}^{hf} (and \mathbf{H}^{SO}) operators evaluated in the explicit product-of-spin-orbitals basis set. The set of $12\left\{c_{\mathrm{JLS}}\right\}$ can be related to four of the six fundamental coupling constants listed at the end of part B. There are several tricks for expressing many-electron reduced matrix elements in terms of one-electron reduced matrix elements. One trick is to start with "extreme states". Another is to exploit a matrix element sum rule based on the trace invariance of matrix representations of \mathbf{H}. For $\mathbf{H}^{\text {SO }}$ use ${ }^{3} \mathrm{~F}_{4} \mathrm{M}_{\mathrm{J}}=4$ to get $\zeta_{3_{\mathrm{F}}},{ }^{3} \mathrm{P}_{0} \mathrm{M}_{\mathrm{J}}=0$ (your answer to part A) to get $\zeta_{3_{\mathrm{P}}}$, and (if you are brave: optional) the sum rule for $J=3, M_{J}=3$ to get $\zeta_{3_{\mathrm{D}}}$. For $\mathbf{H}^{\text {hf }}$ consider only ${ }^{3} \mathrm{~F}_{4} \mathrm{M}_{\mathrm{F}}=(4+5 / 2)$ and (if you are brave: optional) ${ }^{1} \mathrm{~F}_{3} \mathrm{M}_{\mathrm{F}}=(3+5 / 2)$.

