MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 5.73 Quantum Mechanics I
 Fall, 2002

Professor Robert W. Field

Problem Set \#10

DUE: \quad At the start of Lecture on Friday, December 6.
Reading: Golding Handout

Problems:

1. A. Use the method of M_{L}, M_{S} boxes to determine the L, S "terms" that belong to the $d^{2}, d^{2} p$, and $n d^{2} n^{\prime} d$ electronic configurations. Use (and explain) shortcuts to deal with the $\mathrm{d}^{2}, \mathrm{~d}^{2} \mathrm{p}$, and $\mathrm{nd}^{2} \mathrm{n}^{\prime} \mathrm{d}$ configurations.
B. What is the total degeneracy of the d^{3} configuration? Use this result to direct your guesswork in determining the L-S terms that belong to d^{3} by using your result for $\mathrm{nd}^{2} \mathrm{n}^{\prime} \mathrm{d}$ and eliminating inappropriate L-S terms.
C. Use the ladders plus orthogonality method to derive the linear combination of Slater determinants that corresponds to the $\mathrm{d}^{2}{ }^{3} \mathrm{P}_{\mathrm{L}}=1, \mathrm{M}_{\mathrm{S}}=0$ state.
D. Use $3-\mathrm{j}$ coefficients to construct $\mathrm{L}=1, \mathrm{M}_{\mathrm{L}}=1, \mathrm{~S}=1, \mathrm{M}_{\mathrm{S}}=0$ from
$\left(\ell_{1}=2, \mathrm{~m}_{\ell_{1}}, \mathrm{~s}_{1}=1 / 2, \mathrm{~m}_{\mathrm{s}_{1}}\right)\left(\ell_{2}=2, \mathrm{~m}_{\ell_{2}}=1-\mathrm{m}_{\ell_{1}}, \mathrm{~s}_{2}=1 / 2, \mathrm{~m}_{\mathrm{s}_{2}}=-\mathrm{m}_{\mathrm{s}_{1}}\right)$ combinations of spin-orbitals. The relevant coupled \leftrightarrow uncoupled representation formula is:

$$
\left|\mathrm{Jj}_{1} \mathrm{j}_{2} \mathrm{M}_{\mathrm{J}}\right\rangle=\sum_{\mathrm{m}_{2}=-\mathrm{j}_{2}}^{\mathrm{j}_{2}}(-1)^{\mathrm{j}_{\mathrm{i}}-\mathrm{j}_{2}+\mathrm{M}}(2 \mathrm{~J}+1)^{1 / 2}\left(\begin{array}{ccc}
\mathrm{j}_{1} & \mathrm{j}_{2} & \mathrm{~J} \\
\mathrm{~m}_{1} & \mathrm{~m}_{2} & -\mathrm{M}_{\mathrm{J}}
\end{array}\right)\left\langle\mathrm{j}_{1} \mathrm{~m}_{1}\right\rangle\left|\mathrm{j}_{2} \mathrm{~m}_{2}\right\rangle .
$$

The only Slater determinants that you will need to consider are $\|2 \alpha-1 \beta\|,\|2 \beta-1 \alpha\|,\|1 \alpha 0 \beta\|$, and $\|1 \beta 0 \alpha\|$.
E. Use the $\mathbf{L}^{2}, \mathbf{S}^{2}$ method to set up the $\mathrm{M}_{\mathrm{L}}=0, \mathrm{M}_{\mathrm{S}}=0$ block of d^{2}. Find the linear combination of Slater determinants that corresponds to ${ }^{3} \mathrm{P} \mathrm{M}_{\mathrm{L}}=0, \mathrm{M}_{\mathrm{S}}=0$ and then use \mathbf{L}_{+}to derive ${ }^{3} \mathrm{P} \mathrm{M}_{\mathrm{L}}=1$, $\mathrm{M}_{\mathrm{s}}=0$.
2. A. Derive the \mathbf{L}^{2} matrix for $\mathrm{M}_{\mathrm{L}}=3, \mathrm{M}_{\mathrm{S}}=0$ of f^{2} shown on page 32-4.
B. Derive the \mathbf{S}^{2} matrix for $M_{L}=3, M_{S}=0$ of f^{2}. Find the eigenvalues and eigenvectors.
C. Derive the four eigenvectors of the $\mathrm{M}_{\mathrm{L}}=3, \mathrm{M}_{\mathrm{s}}=0$ box of f^{2} shown on page 32-4.
D. Use the results of parts B and C to derive the relationship between the many-electron spinorbit coupling constants

$$
\zeta\left(4 \mathrm{f}^{2} ;{ }^{3} \mathrm{H}\right), \zeta\left(4 \mathrm{f}^{2},{ }^{3} \mathrm{~F}\right) \text {, and } \zeta\left(4 \mathrm{f}^{2},{ }^{3} \mathrm{P}\right)
$$

and the one-electron spin-orbit coupling constant, $\zeta(4 \mathrm{f})$.
[HINT: You are going to have to apply S_{+}or S_{-}to your eigenvectors.]
E. This is going to involve some lengthy calculations, using some combination of ladders and/or Clebsch-Gordan algebra. Work out the diagonal and off-diagonal contributions of $\mathbf{H}^{5 O}$ to the $\mathrm{J}=$ 4 block $\left({ }^{3} \mathrm{~F}_{4},{ }^{3} \mathrm{H}_{4},{ }^{1} \mathrm{G}_{4}\right)$ of f^{2}.
F. Suppose, at $t=0$ the single Slater determinant of $f^{2},\|3 \alpha 1 \beta\|$ is populated. Compute the survival probability of the initially formed non-eigenstate,

$$
\mathrm{P}(\mathrm{t})=|\langle\Psi(0) \mid \Psi(\mathrm{t})\rangle|^{2}
$$

To solve this problem you need to work out the $e^{2} / r_{i j}$ energies of all L-S-J terms of f^{2} that are capable of having $\mathrm{M}_{\mathrm{J}}=4$ (i.e. $\mathrm{J} \geq 4$). You will also need diagonal and off-diagonal matrix elements of $\mathbf{H}^{\text {SO }}$ for $\mathrm{J}=4(3 \times 3), \mathrm{J}=5(1 \times 1)$, and $\mathrm{J}=6(2 \times 2$, but this is easy $)$.

