MASSACHUSETTS INSTITUTE OF TECHNOLOGY

5.73 Quantum Mechanics I Fall, 2002

Professor Robert W. Field

Problem Set #10

DUE: At the start of Lecture on Friday, December 6.

Reading: Golding Handout

Problems:

- 1. A. Use the method of M_L, M_S boxes to determine the L,S "terms" that belong to the d², d²p, and nd²n'd electronic configurations. Use (and explain) shortcuts to deal with the d², d²p, and nd²n'd configurations.
 - B. What is the total degeneracy of the d³ configuration? Use this result to direct your guesswork in determining the L–S terms that belong to d³ by using your result for nd²n'd and eliminating inappropriate L–S terms.
 - C. Use the ladders plus orthogonality method to derive the linear combination of Slater determinants that corresponds to the $d^2 {}^{3}P M_{L} = 1$, $M_{S} = 0$ state.
 - D. Use 3 j coefficients to construct L = 1, $M_L = 1$, S = 1, $M_S = 0$ from $(\ell_1 = 2, m_{\ell_1}, s_1 = 1/2, m_{S_1})(\ell_2 = 2, m_{\ell_2} = 1 - m_{\ell_1}, s_2 = 1/2, m_{s_2} = -m_{s_1})$ combinations of spin-orbitals. The relevant coupled \leftrightarrow uncoupled representation formula is:

$$|Jj_{1}j_{2}M_{J}\rangle = \sum_{m_{2}=-j_{2}}^{j_{2}} (-1)^{j_{1}-j_{2}+M} (2J+1)^{1/2} \begin{pmatrix} j_{1} & j_{2} & J \\ m_{1} & m_{2} & -M_{J} \end{pmatrix} |j_{1}m_{1}\rangle |j_{2}m_{2}\rangle.$$

The only Slater determinants that you will need to consider are $||2\alpha - 1\beta||$, $||2\beta - 1\alpha||$, $||1\alpha 0\beta||$, and $||1\beta 0\alpha||$.

- E. Use the L^2 , S^2 method to set up the $M_L = 0$, $M_S = 0$ block of d^2 . Find the linear combination of Slater determinants that corresponds to ${}^{3}P M_L = 0$, $M_S = 0$ and then use L_+ to derive ${}^{3}P M_L = 1$, $M_S = 0$.
- 2. A. Derive the L² matrix for $M_L = 3$, $M_S = 0$ of f² shown on page 32-4.
 - B. Derive the S^2 matrix for $M_L = 3$, $M_S = 0$ of f^2 . Find the eigenvalues and eigenvectors.
 - C. Derive the four eigenvectors of the $M_L = 3$, $M_S = 0$ box of f² shown on page 32-4.
 - D. Use the results of parts B and C to derive the relationship between the many-electron spinorbit coupling constants

 $\zeta(4f^2; {}^{3}H), \zeta(4f^2, {}^{3}F), \text{ and } \zeta(4f^2, {}^{3}P)$

and the one-electron spin-orbit coupling constant, $\zeta(4f)$. [HINT: You are going to have to apply S_+ or S_- to your eigenvectors.]

- E. This is going to involve some lengthy calculations, using some combination of ladders and/or Clebsch-Gordan algebra. Work out the diagonal and off-diagonal contributions of \mathbf{H}^{SO} to the J = 4 block (${}^{3}F_{4'}{}^{3}H_{4'}{}^{1}G_{4}$) of f².
- F. Suppose, at t = 0 the single Slater determinant of f^2 , $\|3\alpha 1\beta\|$ is populated. Compute the survival probability of the initially formed non-eigenstate,

$$\mathbf{P}(t) = \left| \left\langle \Psi(0) \right| \Psi(t) \right\rangle^2.$$

To solve this problem you need to work out the e^2/r_{ij} energies of all L–S–J terms of f^2 that are capable of having $M_J = 4$ (i.e. $J \ge 4$). You will also need diagonal and off-diagonal matrix elements of \mathbf{H}^{SO} for J = 4 (3 × 3), J = 5 (1 × 1), and J = 6 (2 × 2, but this is easy).