MASSACHUSETTS INSTITUTE OF TECHNOLOGY

5.73 Quantum Mechanics I Fall, 2002

Professor Robert W. Field

Problem Set #4

DUE: At the start of Lecture on Friday, October 4.

Reading: CTDL, pages 94-144.

Problems:

1. <u>RKR and Franck-Condon</u>. Use Robert LeRoy's programs! http://theochem.uwaterloo.edu/~leroy/

For CO, consider the $A^1\prod$ and $X^1\Sigma^+$ electronic states. The molecular constants (in cm⁻¹ units) are:

	$X^1\Sigma^+$	$\underline{A^{1}}\Pi$
Y ₀₀	0.190	-0.554
Y ₁₀	2169.814	1518.24
Y ₂₀	-13.288	-19.40
Y ₃₀	0.01051	0.766
Y ₀₁	1.931281	1.6115
Y ₁₁	-0.017504	-0.02325
Y ₂₁	5.487×10^{-7}	0.00159
		<u>_</u>
	$\mu = 6.85620871$ amu	$D_0^0(X) = 89462 \text{cm}^{-1}$
	$T_e = 65075.77 cm^{-1}$	$D_0^0(A) = (89462 - 64748) \text{ cm}^{-1} = 24714 \text{ cm}^{-1}$
	$R_e(X) = 0.1128323nm$	$R_{e}(A) = 0.12353nm$

A. Determine the RKR V(*x*) potential energy curves for the CO $X^1\Sigma^+$ and $A^1\Pi$ electronic states. Use the following G(v) and B(v) functions

$$G(\mathbf{v}) = Y_{00} + Y_{10}(\mathbf{v} + 1/2) + Y_{20}(\mathbf{v} + 1/2)^2 + Y_{30}(\mathbf{v} + 1/2)^3$$

$$B(\mathbf{v}) = Y_{01} + Y_{11}(\mathbf{v} + 1/2) + Y_{21}(\mathbf{v} + 1/2)^2$$

as input to RKR. Ask RKR to calculate turning points for $-1/2 \le v < 15$ in steps of 0.25.

B. Calculate overlap integrals, $\langle v'|v'' \rangle$, and Franck Condon factors for all transitions between v'' = 0 of the X-state to $0 \le v' \le 15$ of the A-state. The Franck-Condon factor is

$$q_{\mathbf{v'v''}} = \left| \left< \mathbf{v'} \mid \mathbf{v''} \right> \right|^2$$

where q is the F-C factor, v' and v" are respectively the vibrational quantum numbers for the upper (A) and lower (X) electronic states.

- C. Sketch what the A–X absorption spectrum would look like. Consider that initially only v'' = 0 is populated and represent each vibrational band as a vertical line, at the frequency of the $v' \leftarrow v'' = 0$ transition, with height equal to the F-C factor. [This cartoon of the spectrum ignores the rotational structure of each vibrational band.]
- D. Now create a wavepacket in the $A^{1}\Pi$ state by using a 1fs laser pulse, centered at ~72,000 cm⁻¹, to *in effect* transfer the v" = 0 wavefunction onto the upper potential. A 1fs pulse has a Fourier Transform width of ~ 15,000 cm⁻¹.

$$\Psi(x,0) = \sum_{\mathbf{v}'=0,15} \langle \mathbf{v}' | \mathbf{v}'' = 0 \rangle \psi_{\mathbf{v}'}(x) \qquad \left[x = R - R_e \right]$$

- (i) Plot $|\Psi(x,0)|^2$ vs. *x*. Compare it to $|\Psi_{x''=0}(x)|^2$.
- (ii) Calculate $\langle E \rangle = E_0$, $\langle x \rangle = x_0$, and $\langle p \rangle = p_0$ at t = 0 for this wavepacket. You are going to have to ask LeRoy's programs to calculate a lot (136 each for *E*, *x*, and *p*) of integrals of the form $\langle v_i | \mathbf{H} | v_j \rangle$, $\langle v_i | \mathbf{x} | v_j \rangle$, and $\langle v_i | \mathbf{p} | v_j \rangle$. If this turns out to be too difficult, use harmonic oscillator selection rules ($\Delta v = \pm 1$ for **x** and **p**, $\Delta v = 0$ for **H**) and scaling rules ($\langle v + 1 | \mathbf{x} | v \rangle = (v + 1)^{1/2} \langle 1 | \mathbf{x} | 0 \rangle$ and similarly for **p**).

- (iii) Why is $p_0 \approx 0$? Why is $\langle x \rangle_0 \approx R_e(X) R_e(A) = -0.0107$ mm? Why is $E_0 \approx 65,076 + V_A(R = R_e(X))$?
- (iv) The classical Franck-Condon principle requires that, because an electronic transition is "instantaneous", the nuclear coordinates and momenta do not change, $\Delta R = 0$ and $\Delta P = 0$. The $\Delta R = 0$ rule requires transitions to be vertical and the $\Delta P = 0$ rule is nearly equivalent to a requirement that strong transitions be from turning point to turning point (where $p(x_{\pm}) = 0$). This means that you can determine E_0 and $\langle x \rangle_0$ from a simple potential curve diagram rather than the lengthy calculation you have done in part D(ii). Compare the values of E_0 and $\langle x \rangle_0$ obtained from the potential curve diagram to those you obtained in a rigorous calculation.
- E. Now set up

$$\Psi(x,t) = \sum_{v'=0,15} \langle v' | v'' = 0 \rangle \psi_{v'}(x) e^{-iE_v t/\hbar}$$

for the wavepacket in part D. You have already calculated $\langle v'|v''=0 \rangle$ in part B. Be sure to retain the signs of the overlap integrals.

- (i) Compute and plot $\langle x \rangle_t$, $\langle p \rangle_t$.
- (ii) What does your plot of $\langle x \rangle_t$ tell you about the width of the upper potential, $V_A(x)$, at $\langle E \rangle_0$? [NOTE that $\langle E \rangle_t = \langle E \rangle_0 = E_0$!] What does it tell you about the shape of $V_A(x)$? What does the maximum value of $\langle p \rangle_t$ tell you about the depth of $V_A(x)$ (i.e. the energy of the minimum of $V_A(x)$)?
- (iii) $\langle x \rangle_t$ and $\langle p \rangle_t$ are not observable directly in a simple time-domain experiment. However, the average oscillation period of $\langle x \rangle_t$ of the wavepacket is easily measurable. Compare the oscillation period, *T*, defined as $\langle x \rangle_0 = \langle x \rangle_T$, to $\rho(E_0)/c$, where $\rho(E_0)$ is the density of states at E_0 in units of $1/cm^{-1}$ and *c* is the speed of light in units of cm/sec. You can obtain $\rho(E_0)$ from $\frac{dG(v)}{dv}\Big|_{v=v(E_0)}$ and $v(E_0)$ is obtained from

 $E_{vib} = E_0 - T_e = G(v(E_0)).$

F. Plot the survival probability of your wavepacket

$$P(t) = \left| \langle \Psi(x,t) | \Psi(x,0) \rangle \right|^2.$$

You should see a series of partial rephasings, each one smaller than the previous one. Why? Will the system ever rephase nearly perfectly to $P(t) \approx 1.0$? If so, can you predict when this will occur?

- G. There is a lot of useful information in P(t). The initial rate of decay of P(t) is related to $\frac{dV(x)}{dx}\Big|_{x=x_0}$ because the force on the wavepacket is -1 times the gradient of V(x). In order to relate the initial decay rate of P(t), via classical mechanics, to the gradient of the potential at x_0 , we need to define a semi-classical length of the wavepacket so that we can imagine the wavepacket moving away from perfect overlap with itself at t = 0 and use this to define a time-dependent overlap probability. Use the distance of the first internal node of $\Psi_{v(E_0)}(x)$ from x_0 as this wavepacket length. What is the value of P(t) when a classical mechanical particle has moved from x_0 to the position of the first node of $\Psi_{v(E_0)}(x)$. You can approximate V(x) as linear at x_0 . This provides a universal relationship between $\frac{dV}{dx}\Big|_{x_0}$ and the decay rate of P(t). Using this relationship, the slope of an excited potential curve may be experimentally determined at $R_e(x)$ from the observed $\frac{dP}{dt}\Big|_{t=0}$.
- H. The ratio of P(t) values at the second and first partial recurrences of the wavepacket, $P(T_2)/P(T_1)$, provides information about the ratio of the anharmonicity of the potential to the average vibrational frequency at E_0 . For a G(v) function truncated to

$$G(v) = Y_{10}(v + 1/2) + Y_{20}(v + 1/2)^2$$

$$\rho(v) = Y_{10} + 2Y_{20}(v + 1/2).$$

Thus, for a wavepacket with average excitation energy E_0 , $P(T_2)/P(T_1)$ is going to be related to the ratio

$$\frac{\frac{d^2G}{dv^2}\Big|_{v=v(E_0)}}{\frac{dG}{dv}\Big|_{v=v(E_0)}} \approx \frac{2Y_{20}}{Y_{10} + 2Y_{20}(v+1/2)}.$$

Since you determine $Y_{10} + 2Y_{20}[v(E_0) + 1/2]$ from the oscillation period of P(t) determined in part E(iii), you can determine the anharmonicity constant from $P(T_2)/P(T_1)$. From the known values of Y_{10} , Y_{20} , and $v(E_0)$ and your empirical value for $P(T_2)/P(T_1)$, obtain a value for the universal proportionality factor relating $P(T_2)/P(T_1)$ to Y_{10} and Y_{20} .

- I. What would $|\Psi(x,0)|^2$ look like if you had started the system initially in v'' = 1 instead of v'' = 0? Would this two-lobed initial preparation make P(t) have a more complicated appearance? Explain. Speculate about the evolution of $|\Psi(x,t)|^2$ for such a preparation. [HINT: think in terms of two wavepackets, each with its own values of $\langle x \rangle_0$, $\langle p \rangle_0$, and $\langle E \rangle_0$.] Can you guess what these initial values are and how the center position and momentum of these two wavepackets would sample $V_A(x)$?
- 2. CTDL, page 203, #1. This is a beautiful introduction to "density matrices".