# MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

### 5.73 Quantum Mechanics I

Fall, 2002

## Professor Robert W. Field

## Problem Set \#4

DUE: At the start of Lecture on Friday, October 4.
Reading: CTDL, pages 94-144.

## Problems:

1. RKR and Franck-Condon. Use Robert LeRoy's programs!
http://theochem.uwaterloo.edu/~leroy/

For CO, consider the $\mathrm{A}^{1} \Pi$ and $\mathrm{X}^{1} \Sigma^{+}$electronic states. The molecular constants (in $\mathrm{cm}^{-1}$ units) are:

|  | $\underline{X^{1} \Sigma^{+}}$ | $\underline{A^{1} \Pi}$ |
| :--- | :---: | :---: |
|  |  |  |
| $\mathrm{Y}_{00}$ | 0.190 | -0.554 |
| $\mathrm{Y}_{10}$ | 2169.814 | 1518.24 |
| $\mathrm{Y}_{20}$ | -13.288 | -19.40 |
| $\mathrm{Y}_{30}$ | 0.01051 | 0.766 |
| $\mathrm{Y}_{01}$ | 1.931281 | 1.6115 |
| $\mathrm{Y}_{11}$ | -0.017504 | -0.02325 |
| $\mathrm{Y}_{21}$ | $5.487 \times 10^{-7}$ | 0.00159 |
|  |  | 0 |
|  | $\mu=6.85620871 \mathrm{amu}$ | $\mathrm{D}_{0}(\mathrm{X})=89462 \mathrm{~cm}^{-1}$ |
|  | $\mathrm{~T}_{\mathrm{e}}=65075.77 \mathrm{~cm}^{-1}$ | 0 |
|  | $\mathrm{D}_{0}(\mathrm{~A})=(89462-64748) \mathrm{cm}^{-1}=24714 \mathrm{~cm}^{-1}$ |  |
|  | $\mathrm{R}_{\mathrm{e}}(\mathrm{X})=0.1128323 \mathrm{~nm}$ | $\mathrm{R}_{\mathrm{e}}(\mathrm{A})=0.12353 \mathrm{~nm}$ |

A. Determine the RKR $\mathrm{V}(x)$ potential energy curves for the $\mathrm{CO}^{1} \Sigma^{+}$and $\mathrm{A}^{1} \Pi$ electronic states. Use the following $G(\mathrm{v})$ and $B(\mathrm{v})$ functions

$$
\begin{aligned}
& G(v)=Y_{00}+Y_{10}(v+1 / 2)+Y_{20}(v+1 / 2)^{2}+Y_{30}(v+1 / 2)^{3} \\
& B(v)=Y_{01}+Y_{11}(v+1 / 2)+Y_{21}(v+1 / 2)^{2}
\end{aligned}
$$

as input to $R K R$. Ask RKR to calculate turning points for $-1 / 2 \leq v<15$ in steps of 0.25 .
B. Calculate overlap integrals, $\left\langle v^{\prime} \mid v^{\prime \prime}\right\rangle$, and Franck Condon factors for all transitions between $v^{\prime \prime}=0$ of the $X$-state to $0 \leq v^{\prime} \leq 15$ of the A-state. The Franck-Condon factor is

$$
q_{\mathrm{v}^{\prime} \mathrm{v}^{\prime \prime}}=\left|\left\langle\mathrm{v}^{\prime} \mid \mathrm{v}^{\prime \prime}\right\rangle\right|^{2}
$$

where $q$ is the F-C factor, $\mathrm{v}^{\prime}$ and $\mathrm{v}^{\prime \prime}$ are respectively the vibrational quantum numbers for the upper $(A)$ and lower $(X)$ electronic states.
C. Sketch what the $\mathrm{A}-\mathrm{X}$ absorption spectrum would look like. Consider that initially only $\mathrm{v}^{\prime \prime}=0$ is populated and represent each vibrational band as a vertical line, at the frequency of the $\mathrm{v}^{\prime} \leftarrow \mathrm{v}^{\prime \prime}=0$ transition, with height equal to the F-C factor. [This cartoon of the spectrum ignores the rotational structure of each vibrational band.]
D. Now create a wavepacket in the $A^{1} \Pi$ state by using a 1 fs laser pulse, centered at $\sim 72,000 \mathrm{~cm}^{-1}$, to in effect transfer the $\mathrm{v}^{\prime \prime}=0$ wavefunction onto the upper potential. A 1 fs pulse has a Fourier Transform width of $\sim 15,000 \mathrm{~cm}^{-1}$.

$$
\Psi(x, 0)=\sum_{\mathrm{v}^{\prime}=0,15}\left\langle\mathrm{v}^{\prime} \mid \mathrm{v}^{\prime \prime}=0\right\rangle \psi_{\mathrm{v}^{\prime}}(x) \quad\left[x=R-R_{e}\right]
$$

(i) Plot $|\Psi(x, 0)|^{2}$ vs. $x$. Compare it to $\left|\Psi_{\mathrm{v}^{\prime \prime}=0}(x)\right|^{2}$.
(ii) Calculate $\langle E\rangle=E_{0},\langle x\rangle=x_{0}$, and $\langle p\rangle=p_{0}$ at $t=0$ for this wavepacket. You are going to have to ask LeRoy's programs to calculate a lot (136 each for $E, x$, and $p$ ) of integrals of the form $\left\langle\mathrm{v}_{i}\right| \mathbf{H}\left|\mathrm{v}_{j}\right\rangle,\left\langle\mathrm{v}_{i}\right| \mathbf{x}\left|\mathrm{v}_{j}\right\rangle$, and $\left\langle\mathrm{v}_{i}\right| \mathbf{p}\left|\mathrm{v}_{j}\right\rangle$. If this turns out to be too difficult, use harmonic oscillator selection rules $(\Delta v= \pm 1$ for $\mathbf{x}$ and $\mathbf{p}, \Delta v=0$ for $\mathbf{H})$ and scaling rules $\left(\langle\mathrm{v}+1| \mathbf{x}|\mathrm{v}\rangle=(\mathrm{v}+1)^{1 / 2}\langle 1| \mathbf{x}|0\rangle\right.$ and similarly for $\left.\mathbf{p}\right)$.
(iii) Why is $p_{0} \approx 0$ ? Why is $\langle\mathrm{x}\rangle_{0} \approx \mathrm{R}_{\mathrm{e}}(\mathrm{X})-\mathrm{R}_{\mathrm{e}}(\mathrm{A})=-0.0107 \mathrm{~nm}$ ? Why is $\mathrm{E}_{0} \approx 65,076+\mathrm{V}_{\mathrm{A}}\left(\mathrm{R}=\mathrm{R}_{\mathrm{e}}(\mathrm{X})\right)$ ?
(iv) The classical Franck-Condon principle requires that, because an electronic transition is "instantaneous", the nuclear coordinates and momenta do not change, $\Delta \mathrm{R}=0$ and $\Delta \mathrm{P}=0$. The $\Delta \mathrm{R}=0$ rule requires transitions to be vertical and the $\Delta \mathrm{P}=0$ rule is nearly equivalent to a requirement that strong transitions be from turning point to turning point (where $\mathrm{p}\left(\mathrm{x}_{ \pm}\right)=0$ ). This means that you can determine $\mathrm{E}_{0}$ and $\langle\mathrm{x}\rangle_{0}$ from a simple potential curve diagram rather than the lengthy calculation you have done in part D (ii). Compare the values of $\mathrm{E}_{0}$ and $\langle\mathrm{x}\rangle_{0}$ obtained from the potential curve diagram to those you obtained in a rigorous calculation.
E. Now set up

$$
\Psi(x, t)=\sum_{\mathrm{v}^{\prime}=0,15}\left\langle\mathrm{v}^{\prime} \mid \mathrm{v}^{\prime \prime}=0\right\rangle \psi_{\mathrm{v}^{\prime}}(x) e^{-i E_{\mathrm{v}} t / \hbar}
$$

for the wavepacket in part D. You have already calculated $\left\langle v^{\prime} \mid v^{\prime \prime}=0\right\rangle$ in part B. Be sure to retain the signs of the overlap integrals.
(i) Compute and plot $\langle x\rangle_{t},\langle p\rangle_{t}$.
(ii) What does your plot of $\langle x\rangle_{t}$ tell you about the width of the upper potential, $\mathrm{V}_{\mathrm{A}}(\mathrm{x})$, at $\langle E\rangle_{0}$ ? [NOTE that $\langle\mathrm{E}\rangle_{\mathrm{t}}=\langle\mathrm{E}\rangle_{0}=\mathrm{E}_{0}$ !] What does it tell you about the shape of $\mathrm{V}_{\mathrm{A}}(\mathrm{x})$ ? What does the maximum value of $\langle p\rangle_{t}$ tell you about the depth of $V_{A}(x)$ (i.e. the energy of the minimum of $\mathrm{V}_{\mathrm{A}}(\mathrm{x})$ )?
(iii) $\langle\mathrm{x}\rangle_{\mathrm{t}}$ and $\langle\mathrm{p}\rangle_{\mathrm{t}}$ are not observable directly in a simple time-domain experiment. However, the average oscillation period of $\langle x\rangle_{t}$ of the wavepacket is easily measurable. Compare the oscillation period, $T$, defined as $\langle\mathrm{x}\rangle_{0}=\langle\mathrm{x}\rangle_{T}$, to $\rho\left(\mathrm{E}_{0}\right) / c$, where $\rho\left(\mathrm{E}_{0}\right)$ is the density of states at $\mathrm{E}_{0}$ in units of $1 / \mathrm{cm}^{-1}$ and $c$ is the speed of light in units of $\mathrm{cm} /$ sec. You can obtain $\rho\left(\mathrm{E}_{0}\right)$ from $\left.\frac{\mathrm{dG}(\mathrm{v})}{\mathrm{dv}}\right|_{\mathrm{v}=\mathrm{v}\left(\mathrm{E}_{0}\right)}$ and $\mathrm{v}\left(\mathrm{E}_{0}\right)$ is obtained from

$$
\mathrm{E}_{\mathrm{vib}}=\mathrm{E}_{0}-\mathrm{T}_{\mathrm{e}}=\mathrm{G}\left(\mathrm{v}\left(\mathrm{E}_{0}\right)\right) .
$$

F. Plot the survival probability of your wavepacket

$$
P(t)=|\langle\Psi(x, t) \mid \Psi(x, 0)\rangle|^{2}
$$

You should see a series of partial rephasings, each one smaller than the previous one. Why? Will the system ever rephase nearly perfectly to $P(t) \approx 1.0$ ? If so, can you predict when this will occur?
G. There is a lot of useful information in $P(t)$. The initial rate of decay of $P(t)$ is related to $\left.\frac{\mathrm{dV}(\mathrm{x})}{\mathrm{dx}}\right|_{\mathrm{x}=\mathrm{x}_{0}}$ because the force on the wavepacket is -1 times the gradient of $\mathrm{V}(\mathrm{x})$. In order to relate the initial decay rate of $P(t)$, via classical mechanics, to the gradient of the potential at $\mathrm{x}_{0}$, we need to define a semi-classical length of the wavepacket so that we can imagine the wavepacket moving away from perfect overlap with itself at $t=0$ and use this to define a time-dependent overlap probability. Use the distance of the first internal node of $\psi_{v\left(\mathrm{E}_{0}\right)}(\mathrm{x})$ from $\mathrm{x}_{0}$ as this wavepacket length. What is the value of $P(t)$ when a classical mechanical particle has moved from $x_{0}$ to the position of the first node of $\psi_{v\left(E_{0}\right)}(x)$. You can approximate $\mathrm{V}(\mathrm{x})$ as linear at $\mathrm{x}_{0}$. This provides a universal relationship between $\left.\frac{\mathrm{dV}}{\mathrm{dx}}\right|_{\mathrm{x}_{0}}$ and the decay rate of $P(t)$. Using this relationship, the slope of an excited potential curve may be experimentally determined at $\mathrm{R}_{\mathrm{e}}(\mathrm{x})$ from the observed $\left.\frac{\mathrm{d} P}{\mathrm{dt}}\right|_{\mathrm{t}=0}$.
H. The ratio of $P(t)$ values at the second and first partial recurrences of the wavepacket, $P\left(T_{2}\right) / P\left(T_{1}\right)$, provides information about the ratio of the anharmonicity of the potential to the average vibrational frequency at $\mathrm{E}_{0}$. For a $G(v)$ function truncated to

$$
\begin{aligned}
& \mathrm{G}(\mathrm{v})=\mathrm{Y}_{10}(\mathrm{v}+1 / 2)+\mathrm{Y}_{20}(\mathrm{v}+1 / 2)^{2} \\
& \rho(\mathrm{v})=\mathrm{Y}_{10}+2 \mathrm{Y}_{20}(\mathrm{v}+1 / 2)
\end{aligned}
$$

Thus, for a wavepacket with average excitation energy $\mathrm{E}_{0}, P\left(T_{2}\right) / P\left(T_{1}\right)$ is going to be related to the ratio

$$
\frac{\frac{\mathrm{d}^{2} \mathrm{G}}{\mathrm{dv}}{ }^{2}}{\left.\frac{\mathrm{dG}}{\mathrm{dv}}\right|_{\mathrm{v}=\mathrm{v}\left(\mathrm{E}_{0}\right)}} \approx \frac{2 \mathrm{Y}_{20}}{} \approx \frac{\left.\mathrm{E}_{0}\right)}{}
$$

Since you determine $\mathrm{Y}_{10}+2 \mathrm{Y}_{20}\left[\mathrm{v}\left(\mathrm{E}_{0}\right)+1 / 2\right]$ from the oscillation period of $P(t)$ determined in part $\mathrm{E}($ iii), you can determine the anharmonicity constant from $P\left(T_{2}\right) / P\left(T_{1}\right)$. From the known values of $\mathrm{Y}_{10}, \mathrm{Y}_{20}$, and $\mathrm{v}\left(\mathrm{E}_{0}\right)$ and your empirical value for $P\left(T_{2}\right) / P\left(T_{1}\right)$, obtain a value for the universal proportionality factor relating $P\left(T_{2}\right) / P\left(T_{1}\right)$ to $\mathrm{Y}_{10}$ and $\mathrm{Y}_{20}$.
I. What would $|\Psi(x, 0)|^{2}$ look like if you had started the system initially in $\mathrm{v}^{\prime \prime}=1$ instead of $\mathrm{v}^{\prime \prime}=0$ ? Would this two-lobed initial preparation make $P(t)$ have a more complicated appearance? Explain. Speculate about the evolution of $|\Psi(x, t)|^{2}$ for such a preparation. [HINT: think in terms of two wavepackets, each with its own values of $\langle\mathrm{x}\rangle_{0},\langle\mathrm{p}\rangle_{0}$, and $\langle\mathrm{E}\rangle_{0}$.] Can you guess what these initial values are and how the center position and momentum of these two wavepackets would sample $\mathrm{V}_{\mathrm{A}}(\mathrm{x})$ ?
2. CTDL, page 203, \#1. This is a beautiful introduction to "density matrices".

