Hydrogen Radial Wavefunctions

The Hydrogen atom is special because it has electronic states and properties that scale with n and ℓ in a simple and global way. This is "structure" that is more than a collection of unrelated facts. H serves as our model for "electronic structure" of manyelectron atoms, molecules, and possibly solids.

By showing how $\mathrm{E},\left\langle\mathrm{r}^{\sigma}\right\rangle$ (size and shapes), $\langle\mathrm{n} \ell| \mathrm{r}\left|\mathrm{n}^{\prime} \ell^{\prime}\right\rangle$ (general matrix element) scale with n and ℓ, it tells us the kind of behavior to look for in more complex systems.

* as a perturbation on H (quantum defects)
* as a hint of relationships useful for extrapolation, assignment, for recognizing when something behaves differently from naive expectations.

TODAY

1. Simplified Radial Equation
2. Boundary conditions at $\mathrm{r} \rightarrow 0$ and $\mathrm{r} \rightarrow \infty$
3. qualitative features of $\mathrm{R}_{\mathrm{n} \ell}(\mathrm{r})$
4. n -scaling of $\left\langle\mathrm{r}^{\sigma}\right\rangle$
5. mathematical form of $\mathrm{R}_{\mathrm{n} \ell}(\mathrm{r})$
6. regular and irregular Coulomb functions

For any central force problem

$$
\mathrm{H}=\left[\frac{\hat{\mathbf{p}}_{\mathrm{r}}^{2}}{2 \mu}+\frac{\hat{\ell}^{2}}{2 \mu \mathrm{r}^{2}}\right]+\mathrm{V}(\mathrm{r})
$$

We know that $\mathrm{H}, \ell^{2}, \ell_{\mathrm{z}}$ commute, so spherical harmonics, $\mathrm{Y}_{\ell}^{\mathrm{m}}(\theta, \phi)$, are eigenfunctions of H with eigenvalues $\hbar^{2} \ell(\ell+1)$.
$\psi(\mathrm{r}, \theta, \phi)=\mathrm{R}(\mathrm{r}) \mathrm{Y}_{\ell}^{\mathrm{m}}(\theta, \phi)$
trial form for separation of ψ
$\mathrm{H} \psi=\left(\frac{\prec_{\mathrm{r}}^{2}}{2 \mu}+\frac{\ell^{2}}{2 \mu \mathrm{r}^{2}}+\mathrm{V}(\mathrm{r})\right) \mathrm{Y}_{\ell}^{\mathrm{m}}(\theta, \phi) \mathrm{R}(\mathrm{r})=\mathrm{E} \psi$
Operate on the $Y_{\ell}^{\mathrm{m}}(\theta, \phi)$ angular wavefunction and move it through to left.

$$
\mathrm{H} \psi=\mathrm{Y}_{\ell}^{\mathrm{m}}(\theta, \phi)(\frac{\prec_{\mathrm{r}}^{2}}{2 \mu}+\underbrace{\frac{\hbar^{2} \ell(\ell+1)}{2 \mu \mathrm{r}^{2}}+\mathrm{V}(\mathrm{r})}_{\mathrm{V}_{\ell}(\mathrm{r})}) \mathrm{R}(\mathrm{r})=\mathrm{E} \psi
$$

so we can take $Y_{\ell}^{m}(\theta, \phi)$ out of the Schrödinger Equation and we are left with a 1-D radial equation where the only trace of the angular part is the ℓ-dependence of $V_{\ell}(\mathrm{r})$, the effective potential energy function.

Since the differential equation depends on $\ell, R(r)$ must also depend on ℓ, thus $\mathrm{R}_{\mathrm{n} \ell}(\mathrm{r})$ is the radial part of ψ, and it will generally be an explicit function of two quantum numbers, n and ℓ.

Usually n specifies the number of radial nodes and ℓ the number of angular nodes, but a special numbering convention for Hydrogen (and hydrogenic ions) causes a slight distortion of this rule.

The radial equation, when the explicit differential operator form of $\mathbf{P}_{\mathrm{r}}^{2}$ is derived and inserted, has the form
$\left\{\left[\begin{array}{c}{\left[-\frac{\hbar^{2}}{2 \mu} \frac{1}{\mathrm{r}} \frac{\mathrm{d}^{2}}{\mathrm{dr}^{2}} \mathrm{r}\right]} \\ \mathrm{T}_{\mathrm{r}}\end{array}+\left[\frac{\hbar^{2} \ell(\ell+1)}{2 \mu \mathrm{r}^{2}}+\mathrm{V}(\mathrm{r})\right]\right\} R_{\mathrm{n} \ell}(\mathrm{r})=\mathrm{E}_{\mathrm{n} \ell} R_{\mathrm{n} \ell}(\mathrm{r})\right.$
It is customary to simplify this equation by replacing $R_{\mathrm{n} \ell}(\mathrm{r})$ by $\frac{1}{\mathrm{r}} u_{\mathrm{n} \ell}(\mathrm{r})$
$\mathrm{R}_{\mathrm{n} \ell}(\mathrm{r})=\frac{1}{\mathrm{r}} u_{\mathrm{n} \ell}(\mathrm{r})$

* equation looks simpler
* volume element looks simpler
* behavior as $r \rightarrow 0$ seems more familiar
insert $\frac{1}{r} u_{n \ell}(r)$ in place of $R_{n \ell}(r)$ and then multiply through on left by r

$$
\left[-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d r^{2}}+\frac{\hbar^{2} \ell(\ell+1)}{2 \mu r^{2}}+V(r)-E_{n \ell}\right] u_{n \ell}(r)=0
$$

looks like ordinary 1-D Schrödinger Equation.
Boundary condition:

$$
u_{n \ell}(r) \rightarrow 0 \quad \text { as } \quad r \rightarrow 0 \quad \text { WHY? Because for all } \ell>0, \mathrm{~V}_{\ell}(0) \rightarrow \infty .
$$

exactly as if $V(r)=\infty \quad r \leq 0$, but of course $r<0$ is impossible, so we had better be careful about behavior of $u_{n e}(r)$ and $R_{n t}(r)$ as $r \rightarrow 0$

Note also that $d^{3} r=r^{2} \sin \theta d r d \theta d \phi$

$$
R_{n^{\prime} \ell^{\prime}}^{*} R_{n \ell} r^{2} d r=u_{n^{\prime} \ell^{\prime}}^{*}(r) u_{n \ell}(r) d r \underbrace{\substack{\text { prem }}}_{\substack{\text { ricancelled. } \\ \text { So volume } \\ \text { element looks } \\ \text { just as in 1-D } \\ \text { problem }}}
$$

Return to special situation as $\mathrm{r} \rightarrow 0$.
Why do we care? It turns out that s-orbitals have $R_{n s}(0) \neq 0$ and that in ESR one measures "Fermi-contact" hyperfine structure which is the spin-density at specific nuclei. It is a direct measure of the ns atomic orbital character in each molecular orbital!
CTDL, p. 781

What is the worst possible divergence of $R_{\mathrm{n} \ell}(\mathrm{r})$ as $\mathrm{r} \rightarrow 0$?
For $\mathrm{r} \rightarrow 0, R_{\mathrm{n} \ell}(\mathrm{r})$ will be dominated by r^{s} where $|s|$ is as small as
possible. This is the most strongly divergent part of $R_{\mathrm{n} \ell}(\mathrm{r})$, which is all we need to be concerned with as $\mathrm{r} \rightarrow 0$.
Let $R_{\mathrm{n} \ell} \sim \mathrm{Cr}^{\mathrm{s}}$, where this is a good approximation at $\mathrm{r} \rightarrow 0$.
Plug this definition into Schrödinger Equation

$$
\begin{aligned}
& \frac{\mathrm{d}^{2}}{\mathrm{dr}^{2}} \mathrm{r} R_{\mathrm{n} \ell}(\mathrm{r})=\frac{\mathrm{d}^{2}}{\mathrm{dr}^{2}} \mathrm{Cr}^{\mathrm{s}+1}=(\mathrm{s}+1)(\mathrm{s}) \mathrm{Cr}^{\mathrm{s}-1} \\
& \mathrm{~T}_{\mathrm{r}}=-\frac{\hbar^{2}}{2 \mu} \frac{1}{\mathrm{r}} \frac{\mathrm{~d}^{2}}{\mathrm{dr}^{2}} \\
& \mathbf{H} R_{\mathrm{n} \ell}(\mathrm{r})=-\frac{\hbar^{2}}{2 \mu} \mathrm{C}(\mathrm{~s}+1)(\mathrm{s}) \mathrm{r}^{\mathrm{s}-2}+\frac{\hbar^{2} \ell(\ell+1)}{2 \mu} \mathrm{Cr}^{\mathrm{s}-2}+\mathrm{V}(\mathrm{r}) \mathrm{Cr}^{\mathrm{s}}-\mathrm{E}_{\mathrm{n} \ell} \mathrm{Cr}^{\mathrm{s}}=0 \\
& \text { if } \mathrm{V}(\mathrm{r}) \propto \frac{1}{\mathrm{r}} \quad\left[\begin{array}{c}
\mathrm{As} \mathrm{r} \rightarrow 0 \mathrm{~V}(\mathrm{r}) \text { rarely diverges } \\
\text { more rapidly than } 1 / \mathrm{r}, \text { thus } \\
\mathrm{V}(\mathrm{r}) \mathrm{Cr}^{\mathrm{s}} \text { gives } \mathrm{r}^{\mathrm{s}-1} .
\end{array}\right]^{*}
\end{aligned}
$$

Then, in the limit $r \rightarrow 0$, the coefficients of the r^{s-2} term (i.e. the most rapidly divergent term) must be $=0$

$$
-(s+1) s+\ell(\ell+1)=0
$$

*This excludes the stronger divergence of the centrifugal barrier term in $\mathrm{V}_{\ell}(\mathrm{r})$.
satisfied if $s=\ell \quad$ or $\quad s=-(\ell+1)$
verify second possibility:
$s(s+1)=(-\ell-1)(-\ell-1+1)=-(\ell+1)(-\ell)=\ell(\ell+1)$

In other words $\mathrm{R}_{\mathrm{n} \ell}(\mathrm{r}) \rightarrow \underset{\substack{\text { well behaved } \\ \text { atr } \rightarrow 0}}{\mathrm{r}^{\ell}}$ OR (if $\left.\mathrm{s}= \pm(\ell+1)\right) \frac{1}{\mathrm{r}^{\ell+1}}$ as $\mathrm{r} \rightarrow 0$

Actually both of these possibilities satisfy the differential equation for $\mathrm{V}(\mathrm{r})=\frac{1}{\mathrm{r}}$ (known as the Coulomb - or H atom Hamiltonian), but the one that diverges as $r \rightarrow 0$ cannot satisfy the $r \rightarrow 0$ boundary condition for the H atom.
** Regular and Irregular Coulomb wavefunctions - we will return to these later in the context of Quantum Defect Theory.

So for now we insist that

$$
R_{n \ell}(r) \rightarrow r^{\ell} \quad \text { as } \quad r \rightarrow 0
$$

$R_{n s}(0) \neq 0$ special situation for $R_{\mathrm{ns}}(\mathrm{r})$
 $R_{n \ell>0}(0)=0$

$$
u_{n \ell}(0)=0 \quad \text { for all } \ell
$$

For Hydrogen
$V_{\ell}(r)=+\frac{\hbar^{2} \ell(\ell+1)}{2 \mu r^{2}}-\frac{e^{2}}{r}$

$$
e^{2} \equiv \frac{q^{2}}{4 \pi \varepsilon_{\circ}}
$$

$$
V_{\ell}(r) \left\lvert\, \mu=\frac{m_{e} m_{p}}{m_{e}+m_{p}} \approx m_{e}\right.
$$

What do we know from our study of 1-D problems?

> WKB
> $\psi_{\text {envelope }} \propto p^{-1 / 2}$

$$
\frac{\lambda}{2}=\frac{\mathrm{h}}{2 \mathrm{p}(\mathrm{r})}
$$

\# of nodes, placement of nodes, degeneracy, behavior at inner and outer turning points, location of inner and outer turning points

ASK QUESTIONS
 shape of $u_{n e}(r)$
 1st lobe, last lobe

inner vs. outer part of $u_{n 1}(r)-$ where is the extra $\frac{h}{2}$ of action acquired (associated with tunneling into nonclassical region)?

$$
\left[\text { recall } \int_{r_{<}(\mathrm{E})}^{\mathrm{r}_{\curvearrowright}(\mathrm{E})} \mathrm{p}(\mathrm{r}) \mathrm{dr}=\frac{\mathrm{h}}{2}(\mathrm{n}+1 / 2)\right]
$$

Find that $\quad \mathrm{E}_{\mathrm{n} \ell}=-\frac{\mathfrak{R}}{\mathrm{n}^{2}} \quad \mathfrak{R}=\frac{\mathrm{e}^{4} \mathrm{~m}_{\mathrm{e}}}{2 \hbar^{2}}$
At turning point $\quad \mathrm{V}_{\ell}(\mathrm{r})=\mathrm{E}_{\mathrm{n} \ell}$

$$
-\frac{\Re}{\mathrm{n}^{2}}=\frac{\hbar^{2} \ell(\ell+1)}{2 \mu \mathrm{r}_{ \pm}^{2}}-\frac{\mathrm{e}^{2}}{\mathrm{r}_{ \pm}} \quad-\frac{\Re}{n^{2}}=\frac{\hbar^{2} \ell(\ell+1)-r_{ \pm} e^{2} 2 \mu}{2 \mu r_{ \pm}^{2}} \quad-\frac{2 \mu r_{ \pm}^{2}}{n^{2}}=\hbar^{2} \ell(\ell+1)-r_{ \pm} e^{2} 2 \mu, ~ l
$$

solve for $\mathrm{r}_{ \pm}$as function of n and ℓ
Use Quadratic formula to find $\mathrm{r}_{ \pm}(\mathrm{n})$

$$
\begin{aligned}
r_{ \pm} & =a_{0}\left[n^{2} \pm n\left(n^{2}-\ell(\ell+1)\right)^{1 / 2}\right] \\
& =a_{0} n^{2}\left[1 \pm\left(1-\frac{\ell(\ell+1)}{n^{2}}\right)^{1 / 2}\right]
\end{aligned}
$$

$\mathrm{a}_{0}=\frac{\hbar^{2}}{\mathrm{e}^{2} \mathrm{~m}_{\mathrm{e}}} \quad$ Bohr radius
when $\ell \ll \mathrm{n}$, where are r_{+}and r_{-}?

Use this equation for the turning points to construct qualitatively correct cartoons of $R_{\mathrm{n} \ell}(\mathrm{r})$ in crucial regions.
surprising systematic degeneracy

etc.
\qquad 2 p
$E_{n \ell}$
\qquad

Because of pattern, we use n to label degenerate groups
$E_{n \ell}=-\frac{\Re}{n^{2}}$
hence n is not \# of radial nodes.

5.73 Lecture \#28

orbital \# of radial nodes

1s	0	
2 s	1	(because it is lowest solution to $\ell=1$ equation)
2 p	0	
3 s	2	
3p	1	
3d	0	
\# radial nodes $=(n-1)-\ell$		
\# angular nodal surfaces ℓ		
total \# nodes $n-1$		

n degeneracy
$1 \quad 1$
$21+(2 \ell+1)=4$
3
$1+3+5=9$
$\mathrm{n} \quad \mathrm{n}^{2}$
n - scaling of $\left\langle r^{\sigma}\right\rangle$
two limits:

$$
\sigma<0
$$

vs.
$\sigma>0$
determined near
inner turning point
$\sim n^{-3}$
(see argument on next page)
outer turning point
Bohr model $r_{n \ell}=a_{0} n^{2}$

$$
\left\langle r^{\sigma}\right\rangle \propto a_{0}^{\sigma} n^{2 \sigma}
$$

Expectation values of r^{σ} vs. transition moments and off--diagonal matrix elements of r^{σ}. Stationary phase.

e^{-}comes into core region fast and leaves fast $-\Delta \mathrm{t}$ same for all n
fraction of time inside core? $\quad \frac{\text { time inside }}{\text { one period }}=\frac{2(v / \lambda)^{-1}}{\frac{h}{E_{n}-E_{n+1}}}$

$$
=\frac{2\left[\frac{\frac{\mathrm{~h}}{\mathrm{p}}}{\mathrm{p} / \mathrm{m}}\right]}{\frac{\mathrm{h}}{2 \mathfrak{R} / \mathrm{n}^{3}}} \approx \frac{4 \mathrm{~m} \Re}{\mathrm{p}^{2} \mathrm{n}^{3}}
$$

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{n}}=-\Re / \mathrm{n}^{2} \\
& \mathrm{E}_{\mathrm{n}+\delta / 2}-\mathrm{E}_{\mathrm{n}-\delta / 2}=\frac{2 \delta \Re}{n^{3}}
\end{aligned}
$$

fraction of time inside $\underset{\sim}{\propto} n^{-3}$

amplitude of $\psi_{n \ell} \propto n^{-3 / 2}$ inside core region

Basis of all Rydberg scaling
inner lobe $\left\{\begin{array}{l}1 \text { st node does not shift with } \mathrm{n} \\ \text { amplitude in first lobe scales as } \mathrm{n}^{-3 / 2}\end{array}\right\}$ Astonishingly important!
all n, n^{\prime} matrix elements of r^{σ} where $\sigma<0$ scale as $\left(\mathrm{nn}^{\prime}\right)^{-3 / 2}$!
Some matrix elements scale this way even when $\sigma>0$.

McQuarrie, page 223

$$
\begin{aligned}
& R_{n \ell}(r)=-\left[\frac{(n-\ell-1)!}{2 n[(n+\ell)!]^{3}}\right]^{1 / 2}\left(\frac{2}{n a_{0}}\right)_{\text {normalization }}^{\ell+3 / 2} r^{\ell} e^{-r / n a_{0}} L_{n+1}^{2 \ell+1}\left(\frac{2 r}{n a_{0}}\right) \\
& \begin{array}{c}
\text { exponential } \\
\rightarrow 0 \text { as } \mathrm{r} \rightarrow \infty
\end{array} \\
& \begin{array}{c}
\text { associated } \\
\text { Laguerre functions } \\
\text { (polynominals) }
\end{array} \\
& \hline
\end{aligned}
$$

Regular and Irregular Coulomb functions ($\mathrm{E} \leq 0$)

$$
\mathrm{u}_{\mathrm{n} \ell}(\mathrm{r}) \equiv \mathrm{rR}(\mathrm{r}) \quad \mathrm{r} \rightarrow 0 \quad \mathrm{r} \rightarrow \infty
$$

regular $f(E, \ell, r) \propto \quad r^{\ell+1} \quad \mathrm{u}(v, \ell, \mathrm{r}) \sin \pi v-\mathrm{v}(\mathrm{v}, \ell, \mathrm{r}) \mathrm{e}^{\mathrm{i} \pi v}$, which is an increasing exponential except when v is a positive integer. Need some other way to satisfy $\mathrm{r} \rightarrow \infty$ boundary condition when v is not an integer
irregular $\quad g(E, \ell, r) \quad \propto \quad \mathrm{r}^{-(\ell)} \quad-\mathrm{u}(\mathrm{v}, \ell, \mathrm{r}) \cos \pi \mathrm{v}+\mathrm{v}(\mathrm{v}, \ell, \mathrm{r}) \mathrm{e}^{\mathrm{i} \pi(v+1 / 2)}$, which blows up.

* $u(v, \ell, r)$ is an increasing exponential as

$$
\mathrm{r} \rightarrow \infty
$$

* $\mathrm{v}(\mathrm{v}, \ell, \mathrm{r})$ is a decreasing exponential as
$r \rightarrow \infty$
(see Gallagher, page 16)
T.F. Gallagher, Rydberg Atoms, page 25
$\langle r\rangle \quad \frac{1}{2}\left[3 n^{2}-\ell(\ell+1)\right]$
$\left\langle r^{2}\right\rangle \quad \frac{n^{2}}{2}\left[5 n^{2}+1-3 \ell(\ell+1)\right]$
$\langle 1 / r\rangle \quad 1 / n^{2}$
$\left\langle 1 / r^{2}\right\rangle \quad \frac{1}{n^{3}(\ell+1 / 2)}$
$\left\langle 1 / r^{3}\right\rangle \quad \frac{1}{n^{3}(\ell+1)(\ell+1 / 2) \ell}$
$\left\langle 1 / r^{4}\right\rangle \quad \frac{3 n^{2}-\ell(\ell+1)}{2 n^{5}(\ell+3 / 2)(\ell+1)(\ell+1 / 2) \ell(\ell-1 / 2)}$
$\left\langle 1 / r^{6}\right\rangle \quad \frac{35 n^{4}-5 n^{2}[6 \ell(\ell+1)-5]+3(\ell+2)(\ell+1) \ell(\ell-1)}{8 n^{7}(\ell+5 / 2)(\ell+2)(\ell+3 / 2)(\ell+1)(\ell+1 / 2) \ell(\ell-1 / 2)(\ell-1)(\ell-3 / 2)}$

Note! | all $\left\langle\mathrm{r}^{\sigma}\right\rangle$ | $\sigma<-1$ | scale as $n^{-3}!$ |
| :---: | :---: | :---: |
| | $\sigma>0$ | scale as $n^{2 \sigma}!$ |
| | | |

