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Matrix Elements of Many-Electron Wavefunctions

Last time:

need both f and g to satisfy boundary condition for E < 0 as  r → ∞
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 is phase shift of ,

infinite set of integer-spaced ν-values that satisfy r → ∞ boundary
condition

Wave emerges from core with ν-independent phase.  Core transforms

wave with correct r → 0 limiting behavior into one that exits imaginary
sphere of radius r0, which contains the core region, with πµ

l
 phase shift.

Core sampled by set of different l’s.

Today:

Wavefunctions and Energy States of many-electron atoms
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noninteger principal quantum number

solutions to Schröd. Eq. outside sphere of radius 

          

A. Normalization

B. Matrix Elements of one - e  Operators:   e.g. 

C. Matrix Elements of two - e  Operators:   e.g. 
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1.

,

orbitals  configurations  L - S states 

2. electrons are Fermions   must be “ ”:  KEY PROBLEM

3. Slater determinants are antisymmetric wrt all  permutations

→ →
→

− −

ψ antisymmetrized

e ei j

(a very bad “perturbation”)

Page 31-9 is an example of what we will be able to do.
* Interpretable trends: Periodic Table
* Atomic energy levels: mysterious code — no atom-to-atom relationships
evident without magic decoder ring.
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Many-electron H

How do we set up matrix representation of this H?

H(0) defines basis set (complete, orthonormal, …)
spatial

part
spin
part the φi(ri)’s could be

hydrogenic or
shielded-core

Rydberg-like orbitals.

H as sum, E as sum, ψ as product

Electronic Configuration:  list of orbital occupancies

e.g.  C 1s22s22p2  six e–

not sufficient to specify state of system
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several  terms arise from this configuration:  e.g. 

we know that     commute with 

so we can use these to block diagonalize .
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Note that although  does not commute with e  this is not

a problem for  and  because  and  do not involve spin.
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I. Method of ML, MS boxes
Advanced Inorganic
Which L–S terms exist, not the specific linear combinations
of spin-orbital products that correspond to these terms.

II. Angular momentum coupling techniques
3-j
ladders plus orthogonality
projection operators

either:

We will return to this problem and approach it both ways.

One rigorous symmetry must be imposed:
Pauli Exclusion Principle:  electrons are Fermions and therefore any acceptable
wavefunction must be antisymmetric with respect to permutation of ANY pair of e–

orbitals

electrons

+ Boson (      integer spin)
– Fermion (1/2 integer spin)

ψ–     fermions

ψ+     bosons

  

How do we get eigenstates of L L S S2 2, , , ?z z
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generalize to 3 e–?  3! combinations needed!  Horrible

ψ’s have N! terms (each a product of N spin-orbitals)
matrix elements have (N!)2 additive terms!

TRICK!  Slater Determinants

orbital

e–

row is label for e–

column is label for spin-orbital

you show that 3 × 3 Slater determinant gives 6 additive product terms

Determinants N × N

* N! terms in expansion of determinant
* determinant changes sign upon permutation of ANY two

rows [e–’s] or columns [spin-orbitals]
* determinant is zero if any two rows or columns are

identical.
* determinant may be uniquely specified by main diagonal

MUST SPECIFY IN ADVANCE A STANDARD ORDER
IN WHICH THE SPIN-ORBITALS ARE TO BE LISTED

ALONG MAIN DIAGONAL

e.g. s ,  s ,  p1 ,  p1 ,  p0 ,  p0 ,  p -1 ,  p -1 ,  α β α β α β α β …

Need a fancy notation to demonstrate how Slater determinants are to be
manipulated in evaluating matrix elements.  This notation is to be forgotten as
soon as it has served its immediate purpose here.

u u

u u
u u u u1 2

1 2
1 2 1 2

1 1
2 2

1 2 2 1
( ) ( )
( ) ( )

( ) ( ) ( ) ( )= −

[or for pN, suppress p in notation:  1α1β0α ∅ ML = 2, MS = 1/2]
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# of binary permutations

 N! different ℘’s

℘℘℘℘ is ONE prescription for rearranging the orbitals from the initially
specified order

℘℘℘℘ is product of several Pij’s or, more useful for proving theorems, a product
of N factors Pi which tell whether the i-th electron is to be left in the i-th
spin-orbital or transferrred to some unspecified spin-orbital

A.  Normalization

Verify that  is correct normalization factorN! /( )−1 2
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ui  are orthonormal

u(i) u(j)  has no meaning because bra and ket must be associated with same e–

       

The only nonzero legal terms in  are those where EACH 
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(Here the electron names match in each bra-ket, but the spin-orbital
quantum numbers do not match.)
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B.  Matrix elements of one-electron operators

Product of N orbital matrix element factors in each term of sum.  Of these, N–1 are
orbital overlap integrals and only one involves the one-e– operator.
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Thus the assumed (N!)–1/2 normalization factor is correct.
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SELECTION RULE Ψ ΨA B AF = 0 if  and  differ by more than one spin - orbital

(at least one of the orbital overlap integrals would be zero)
Bψ ψ

two cases remain:

1.  differ by one spin-orbital

the mismatched orbitals
are in the same position

use ui to denote common spin-orbitals
use ak, bk ≠ 0 to denote unique spin-orbitals

for this choice, all N Pi factors of each ℘℘℘℘ must be identical to all N factors of ℘℘℘℘′

additional requirement:  ℘℘℘℘ must bring mismatched orbitals into i-th position
so that they match up with the f(ri) operator to give

ANY OTHER ARRANGEMENT GIVES

(N – 1)! ways of arranging the e– in the other N – 1 matched orbitals and
there are N identical terms (in which the e– is in the privileged location) in
the sum over i#
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If the order of spin-orbitals in ψA or ψB must be arranged away from the
standard order in order to match the positions of ak and bk, then we get an
additional factor of (–1)p where p is the number of binary permutations

ψ ψA B
p

k ka bF f= −( )1 for differencefor difference
of oneof one
spin-orbitalspin-orbital

i.e. = 12 5 7A

B

A B

= = −

= −

12 3 5 12 5 3

7 3

    

ψ ψF F

2.  ψA = ψB Differ by zero spin-orbitals

all other factors are =1

comes out almost the same as naive
expectation WITHOUT need for
antisymmetrization!

next time G(i,j)

     

N N N

a aA B
i

i i i

! ! identical terms from sum over  again 

f

℘℘ −( )[ ]

= ( )∑

1

ψ ψF r

  

*      Normalization

*  Operator  1 −





−e F

ψ ψA B
i

i i i i iN a i a iF P r P= ( ) ( )[ ]− ∑! ( ) ( )
,

1

℘℘

f

  

ψ α α α

α α α α α α α α α

α α α α α α

= −
= + −

= + −( )
− = − + −

= + − + − + + +[ ]
+ + +

3 1 2

3 1 2

1

3 1 2 3 1 2 3 1 2

0 10 3 2 2 10 3 1 1 0 0 0

2 3
2

1
2

1 2 1 2

         

( )       

/ /

L

L S

J L S

z

z z

h

h

h

Examples of f3:


