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verify that (N!)–1/2 is correct factor

MATRIX ELEMENTS OF F(i) AND G(i,j)

Last time: orbitals → configurations → states (“terms”)
Fermions:  Slater Determinants:  Pauli Exclusion Principle

TODAY: 1.  SLATER DETERMINANTAL MATRIX ELEMENTS

Recall:  specify standard order (because Determinant changes sign upon binary
permutation)

Goal: make inconvenience of Slater determinants almost vanish — matrix
elements will be almost what you expect for simple non-antisymmetrized
products of spin-orbitals.

pages 31-2,3,4 are repeat of 30-6, 7,8
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Notation for Slater Determinant:   main diagonal .
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arrange into products of one - e  overlap integrals:-
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(Here the electron names match in each bra-ket but the spin-orbitals do not
match.)

Think of a one- or two-e– operator as a scheme for dealing with or “hiding” the
small number of mismatched spin-orbitals.
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B.  Matrix elements of one-electron operators

Product of N orbital matrix element factors in each term of sum.  Of these, N–1 are
orbital overlap integrals and only one involves the one-e– operator.

    

Thus it is necessary that 

and 

℘℘ ℘℘

℘℘
℘℘

= ′ = ′ − = +

= ( ) …[ ]
= =

+ ′

−

∑

 ,   ,  ( )

! ( ) ( ) ( ) ( )

p p

N u u u N u N

p p

N N N N

1 1

1 1

1 1

1

1 1ψ ψ

     

each term in sum over  gives +  1,  but there are N possibilities for
 possibilities for 1 2

℘℘
P P,N − 1

  

∴

= ( ) =
−

∑

N

NN N

!

!

 possibilities for sum over ℘℘

℘℘
ψ ψ

1
1 1

    

ψ

ψ

A

p

N

B

p

N

N a a N

N b b N

≡ ( ) −( ) …

≡ ( ) −( ) ′ …

−

−

′

′

∑

∑

! ( ) ( )

! ( ) ( )

/

/

1 2

1

1 2

1

1 1

1 1

℘℘

℘℘

℘℘

℘℘

ψ ψA B
i

p p

i

i

p p

i i i i i

N a f b

N a b

a i f b i

F r

P P

P r P

= ( ) −( ) …[ ] ( ) ′ …[ ]
= ( ) −( ) [ ]
… ( ) ′




…

−

′

+ ′

−

′

+ ′

∑

∑

! ( ) ( )

! ( ) ( )

( ) ( )

, ,

, ,

1

1 1

1

1 1 1 1

1 1 1

1 1 1

℘℘℘℘

℘℘℘℘

℘℘ ℘℘

PP PN N N Na N b N( ) ( )′[ ]

             
F r L= ( )∑ ∑

i
i

i
if e.g. =

r r
ll

Thus the assumed (N!)–1/2 normalization factor is correct.
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SELECTION RULE Ψ ΨA B AF = 0 if  and  differ by more than one spin - orbital

(at least one of the orbital overlap integrals would be zero)
Bψ ψ

two cases remain:

1.  differ by one spin-orbital

the mismatched orbitals
are in the same position

use ui to denote common spin-orbitals
use ak, bk ≠ 0 to denote unique spin-orbitals

for this choice, all N Pi factors of each ℘℘℘℘ must be identical to all N factors of ℘℘℘℘′

additional requirement:  ℘℘℘℘ must bring mismatched orbitals into i-th position
so that they match up with the f(ri) operator to give

ANY OTHER ARRANGEMENT GIVES

(N – 1)! ways of arranging the e– in the other N – 1 matched orbitals and
there are N identical terms (in which the e– is in the privileged location) in
the sum over i�
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If the order of spin-orbitals in ψA or ψB must be arranged away from the
standard order in order to match the positions of ak and bk, then we get an
additional factor of (–1)p where p is the number of binary permutations
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2.  ψA = ψB Differ by zero spin-orbitals

all other factors are =1

comes out almost the same as naive
expectation WITHOUT need for
antisymmetrization!
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C. G(i,j) : 4 cases
1.  differ by more than 2 spin-orbitals:  Matrix Element → 0
2.  differ by 2 spin-orbitals: one pair of nonzero matrix elements
3.  differ by 1 spin-orbital: sum over pairs of nonzero matrix elements
4.  expectation value : differ by 0 spin-orbitals: double sum over pairs of
matrix elements

1.  is obvious — only way to make up for orbital mismatch is to hide the
mismatched orbitals in 〈|g(i,j)|〉 (rather than in an overlap integral).  But one
can only hide 2-mis-matched pairs in, e.g.
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A b

( , )

,ψ ψG( ) = 0 if ψA, ψB differ by more than 2 pairs of
spin-orbitals

2.  differ by two pairs of spin-orbitals

permutations needed to put b1
and b2 in the i and j positions

* are (N – 2)! ways of permuting the N – 2 matched uk functions that are
not filled with e– i and j.  Moreover these permutations must involve
Pk = P′k (all k ≠ i,j).

* also N(N – 1) identical terms in sum over i > j

    

ψ

ψ
A N

B
p

N

u a i a j u N

u b i b j u N

= … … …

= − … … …
1 1 2

1 1 2

1

1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

ψ ψA B
i j

p p

i j i j

N

a i a j g i j b i b j

G

P P P P

= ( ) − [ ] ×

′ ′[ ]

−

> ′

+ ′∑ ∑! ( )

( ) ( ) ( , ) ( ) ( )

,

1

1 2 1 2

1
℘℘℘℘

orthogonality integrals



31 - 65.73 Lecture #31

updated September 19,

Thus there are  identical terms in sums.

But there are still two possibilities:
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the 2 ℘℘℘℘’s differ by one binary permutation

THIS MEANS WE
PUT THE j-th e– in
P′j where WE PUT
THE i-th e– in Pi

# of permutations needed to make ψB match ψA

— no sign ambiguity if standard order is
initially specified

For ψA,ψB different
by 2 spin-orbitals

3. ψA,ψB differ by only one pair of spin-orbitals

You work this out
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The ONLY real surprise that results from the antisymmetrization requirement
for two-electron operators is one extra term (and some signs) that has no
counterpart if antisymmetrization had been ignored.

SUMMARY
* antisymmetrize → Slater determinants
* matrix elements are hardly more complicated than those of simple spin-

orbital products
•signs due to permutation [Standard order]
•extra terms in G(i,j)

Do some examples for p2

1. What L,S terms belong to p2 (Lecture #32:  method of crossing out microstates)
2. What is the correct linear combination of Slater determinants that corresponds to

a specific L-S term in either the JLSMJ〉 or the LMLSMS〉 basis set
•ladders plus orthogonality (Lecture #32)
•L2 and S2 matrices
•3-j coefficients

4. Matrix elements of HSO

• ζ (NLS)
• ζ (NLS) ↔ ζnl

• full HSO in terms of ζnl
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relative energies of L - S terms expressed in terms of  and ' s
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EXAMPLES:
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Patterns of Lowest-Lying States: “Aufbau” for adults!

Atom C N O

lowest config. 1s22s22p2 1s22s22p3 1s22s22p4

L-S terms 1S, 1D, 3P 4S, 2P, 2D 1S, 1D, 3P

Lowest Term 3P0
4S3/2

3P2

(regular) (no fine structure) (inverted)

2p← 2s 2s2p3 2s2p4 2s2p5

3s ← 2p 2s22p3s 2s22p23s 2s22p33s

Transitions to
lowest
configurations
∆l = ±1 3d ← 2p 2s22p3d 2s22p23d 2s22p33d

5,3S, 3,1P, 3,1D
[5S2]

2,4P, 2D, 2S
[4P5/2]

1,3P
[3P2]

1,3P
[3P0]

2,4P, 2D, 2S
[4P1/2]

5,3S, 3,1P, 3,1D
[5S2]

[lowest L-S-J
term of each
configuration] 1,3F, 1,3P

[3F2]

2,4F, 2,4P, 2D  2G, 2S

[4F3/2]

5,3D, 3,1F, 3,1P, 1,3G, 1,3S
[5D0]

characteristic
transition
(2p ↔2s)

3D

3S

5S2

1
5/2

3/2
1/2

4P
0
1

2

3Pi

3P

2

1
0

4S 3/2

3Pi

0
1

2

ζ2p(C) < ζ2p(N) < ζ2p(O)

“regular” “inverted”

lowest L-S
states of the
two relevant
configuration

5/2
3/2
1/24Pi

“inverted”

excitation
resultant

configuration


