32 -

Last time: Matrix elements of Slater determinantal wavefunctions Normalization: $(N!)^{-1/2}$ **F**(i): selection rule (Δ s-o \leq 1), sign depending on order

G(i,j): selection rule ($\Delta s \cdot o \leq 2$), two terms with opposite signs

TODAY: Configuration \varnothing which L-S terms? \varnothing L-S basis states \varnothing matrix elements

Method of crossing out M_L , M_S boxes

ladders plus orthogonality

Many worked out examples will not be covered in lecture.

KEY IDEAS:

- * $1/r_{ii}$ destroys spin-orbital labels as good quantum numbers.
- * Configuration splits into widely spaced L-S-J "terms."
- * $\sum_{i>j} 1/r_{ij}$ is a scalar operator with respect to **L**, **S**, and **J** thus matrix elements are independent of M_L , M_S , and M_J .
- * Configuration generates all possible M_L , M_S components of each L-S term.
- * It can't matter which $M_L,\,M_S$ component we use to evaluate the $1/r_{ij}$ matrix elements
- * Method of microstates and boxes: Book-keeping which L-S states are present, organize the algebra to find eigenstates of L^2 and S^2 , basis for "sum rule" method (next lecture).

Longer term goals: represent "electronic structure" in terms of properties of atomic orbitals

- 1. Configuration \rightarrow L,S terms
- 2. Correct linear combination of Slater determinants for each L,S term: several methods
- 3. 1/r_{ij} matrix elements \rightarrow F_k, G_k Slater-Condon parameters, Slater sum rule trick
- 4. **H**^{SO}
 - * ζ(NLS) coupling constant for each L-S term in an electronic configuration
 - * $\zeta(NLS) \leftrightarrow \zeta_{n\ell}$ one spin-orbit orbital integral for entire configuration

* full H^{SO} matrix in terms of $\zeta_{n\ell}$

- 5. Stark, Zeeman, optical transitions
- 6. transition strengths $\langle n\ell || \mathbf{r} || \mathbf{n'} \ell + 1 \rangle$ (matrix elements of $\mathbf{\vec{r}}$, g values)

There are a vastly smaller number of orbital parameters than the number of electronic states. The periodic table provides a basis for rationalization of orbital parameters (dependence on atomic number and on number of electrons.)

Which L-S terms belong to $(nf)^2$ * shorthand notation for spin - orbitals $nlm_1\alpha/\beta$ e.g. 4f3 α , could suppress 4 and f (||main diagonal|| for Slater determinant, | \rangle | \rangle ...for simple product of spin - orbitals) * standard order (to get signs internally consistent) $3\alpha 3\beta 2\alpha 2\beta$... - 3α - 3β is my standard order for f (2l+1)(2s+1) = (7)(2) = 14 spin orbitals

* which Slater determinants are nonzero and distinct (i.e., not identical when spin - orbitals are permuted to a different ordering)?

f² - take any 2 s-o's and list in standard order

 $\|2\alpha 0\alpha\|$ is OK but $\|0\alpha 2\beta\|$ is not in standard order and $\|2\beta 2\beta\| \equiv 0$

How many nonzero and distinct Slater determinants are there for f²?

 $\frac{14 \text{ spin - orbitals}}{2 \text{ identical electrons}} \frac{14 \cdot 13}{2} = 91 \quad \text{Slater determinants!}$ $general (nl)^{p} : \prod_{nl} \frac{[2(2l+1)]!}{[2(2l+1)-p]!} \frac{1}{p!} \quad \begin{array}{c} \text{put p indistinguishable} \\ e^{-} \text{ and } 2(2\ell+1) \text{-p holes} \\ \text{into } 2(2\ell+1) \text{ boxes} \end{array}$ $\boxed{\text{subshell : one such factor for each subshell}}$

How to generate all 91 linear combinations of Slater determinants that correspond to the 91 possible $|LM_LSM_S\rangle$ basis states that arise from f²? Next lecture.

all of these
are labor
intensive
$$*$$
 ladders plus orthogonality
* construct and diagonalize L^2 and S^2 matrices
* projection operators
* 3-j, 6-j, 9-j coefficients

 M_{L} M_{S}

Sometimes all we want to know is "which L-S terms"? [WHY? $1/r_{ii}$ is scalar with respect to L,S, and J, thus eigenenergies are independent of M_L , M_S and M_J .] EASY because can read $\mathbf{L}_z = \sum \mathbf{l}_{iz}$ and $\mathbf{S}_z = \sum \mathbf{s}_{iz}$ directly from the spin-orbital labels.

$$\mathbf{L}_{z} \| 2\alpha \mathbf{1}\boldsymbol{\beta} \| = \sum_{i=1}^{2} \boldsymbol{\ell}_{iz} \| 2\alpha \mathbf{1}\boldsymbol{\beta} \| = \hbar [2+1] \| 2\alpha \mathbf{1}\boldsymbol{\beta} \|$$
$$M_{L} = 3$$
is sum of m_i's
is sum of m_s's

What about L^2 ? Can do this in either of two ways: **NONLECTURE**

- * as below (very cumbersome)
- * $\mathbf{L}^2 = \mathbf{L}_z^2 + (1/2)(\mathbf{L}_+\mathbf{L}_- + \mathbf{L}_-\mathbf{L}_+)$ [separately apply each

1e⁻ operator rather than treat entire operator as a 2e⁻ operator.]

very laborious because
$$\mathbf{L}^{2} = \sum_{i,j} \ell_{i} \cdot \ell_{j} = \sum_{i} \ell_{i}^{2} + 2\sum_{i \geq j} \ell_{i}\ell_{j}$$
$$\underbrace{\mathbf{L}^{2} \| 2\alpha 1\beta \| \neq \sum_{i} \hbar^{2}\ell_{i}(\ell_{i}+1) \| 2\alpha 1\beta \| \quad \ell_{i} = 3 \text{ for } f$$

WORK OUT L² matrix for $M_L = 3$, $M_S = 0$ block of f² for future reference

$$\mathbf{L}^{2} = \sum_{i,j} \boldsymbol{\ell}_{i} \cdot \boldsymbol{\ell}_{j} = \sum_{i} \left[\boldsymbol{\ell}_{i}^{2} \right] + 2\sum_{i>j} \left[\boldsymbol{\ell}_{iz} \boldsymbol{\ell}_{jz} + \frac{1}{2} \left(\boldsymbol{\ell}_{i+} \boldsymbol{\ell}_{j-} + \boldsymbol{\ell}_{i-} \boldsymbol{\ell}_{j+} \right) \right]$$

$$\Delta \ell = 0, \ \Delta \mathbf{M}_{\ell} = 0 \qquad \Delta \ell = 0, \ \Delta \mathbf{M}_{\ell} = 0 \qquad \Delta \ell = 0, \ \Delta \mathbf{M}_{\ell} = 0 \qquad \Delta \ell = 0, \ \Delta \mathbf{M}_{\ell} = 0 \qquad \Delta \ell = 1$$

all are $\Delta M_S = \Delta m_{S1} = \Delta m_{S2} = 0$

$$\ell(\ell+1) \xrightarrow{\text{m}_{\ell 1} \text{m}_{\ell 2}} \prod_{\substack{\alpha \in I \\ \text{standard order}}} \frac{1}{12 + 12} \|2\alpha I\beta\| + 2(2 \cdot 1)\|2\alpha I\beta\| + 2(2 \cdot 1)\|2\alpha$$

All of the 12, 21 type matrix elements are 0 because of m_s mismatch. $\langle \|2\alpha l\beta\|$ spatial part $\|l\beta 2\alpha\|\rangle = 0$ e.g. Recall $\pm (\langle 12|G|12 \rangle - \langle 12|G|21 \rangle).$

$$\mathbf{L}^{2} \| 2\beta \mathbf{1}\alpha \| = \hbar^{2} \Big[28 \| 2\beta \mathbf{1}\alpha \| - 10 \| 2\alpha \mathbf{1}\beta \| + 12 \cdot 2^{-1/2} \| 3\beta \mathbf{0}\alpha \| \Big]$$
$$\mathbf{L}^{2} \| 3\alpha \mathbf{0}\beta \| = \hbar^{2} \Big[(24 + 3 \cdot 0) \| 3\alpha \mathbf{0}\beta \| + (12 \cdot 2^{-1/2}) \| 2\alpha \mathbf{1}\beta \| \Big]$$
$$\mathbf{L}^{2} \| 3\beta \mathbf{0}\alpha \| = \hbar^{2} \Big[24 \| 3\beta \mathbf{0}\alpha \| + (12 \cdot 2^{-1/2}) \| 2\beta \mathbf{1}\alpha \| \Big]$$

$$\mathbf{L}^{2} = \hbar^{2} \frac{\|3\alpha 0\beta\|}{\|\alpha 1\beta\|} \begin{pmatrix} 24 & 0 & 12 \cdot 2^{-1/2} & 0 \\ 0 & 24 & 0 & 12 \cdot 2^{-1/2} \\ -\|1\alpha 2\beta\| & 12 \cdot 2^{-1/2} & 0 & 28 & -10 \\ -\|0\alpha 3\beta\| & 0 & 12 \cdot 2^{-1/2} & -10 & 28 \end{pmatrix}$$

[the bottom two Slater determinants are intentionally out of standard order to display decreasing values of $m_{\ell}(1)$ and increasing values of $m_{\ell}(2)$.]

find eigenvalues and eigenvectors of this block $\rm M_L$ = 3, $\rm M_S$ = 0 of $\rm f^2$

$$\frac{\mathbf{L}^{2}}{\hbar^{2}} \begin{bmatrix} 3^{-1/2} \| 3\alpha 0\beta \| + 3^{-1/2} \| 3\beta 0\alpha \| + 6^{-1/2} \| 2\alpha 1\beta \| + 6^{-1/2} \| 2\beta 1\alpha \| \end{bmatrix} = \underbrace{30[]}_{\begin{array}{c} \underline{L} = 3 \\ \underline{L}^{2} \end{bmatrix}} \\ \frac{\mathbf{L}^{2}}{\hbar^{2}} \begin{bmatrix} 6^{-1/2} \| 3\alpha 0\beta \| + 6^{-1/2} \| 3\beta 0\alpha \| - 3^{-1/2} \| 2\alpha 1\beta \| - 3^{-1/2} \| 2\beta 1\alpha \| \end{bmatrix} = 12[] \\ \frac{\mathbf{L}^{2}}{\hbar^{2}} \begin{bmatrix} 11^{-1/2} \| 3\alpha 0\beta \| - 11^{-1/2} \| 3\beta 0\alpha \| + 3 \cdot 22^{-1/2} \| 2\alpha 1\beta \| - 3 \cdot 22^{-1/2} \| 2\beta 1\alpha \| \end{bmatrix} = 42[] \\ \frac{\mathbf{L}^{2}}{\hbar^{2}} \begin{bmatrix} 3 \cdot 22^{-1/2} \| 3\alpha 0\beta \| - 3 \cdot 22^{-1/2} \| 3\beta 0\alpha \| - 11^{-1/2} \| 2\alpha 1\beta \| + 11^{-1/2} \| 2\beta 1\alpha \| \end{bmatrix} = \underbrace{20[]} \\ \end{bmatrix}$$

(Note how easy it is to see that normalization is correct.)

a lot of algebra is not presented here!

- * each Slater basis state gets "used up"
- * first 2 eigenfunctions are in form $\alpha\beta + \beta\alpha \rightarrow S = 1$ second 2 eigenfunctions are in form $\alpha\beta - \beta\alpha \rightarrow S = 0$

prove this by applying \mathbf{S}^2 to above eigenfunctions of \mathbf{L}^2

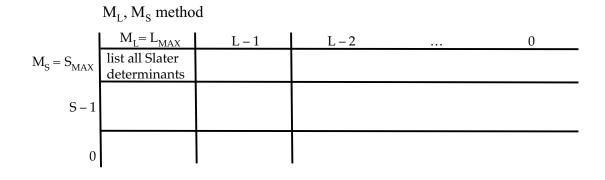
END OF NON-LECTURE

Nonlecture pages were intended to show that applying L^2 and S^2 to Slater determinants is laborious — much moreso than L_z and S_z .

This is one reason why we use the "crossing out M_L , M_S microstates" method to figure out which L,S states must be considered. Often this is sufficient — or can be the basis for some shortcut tricks!

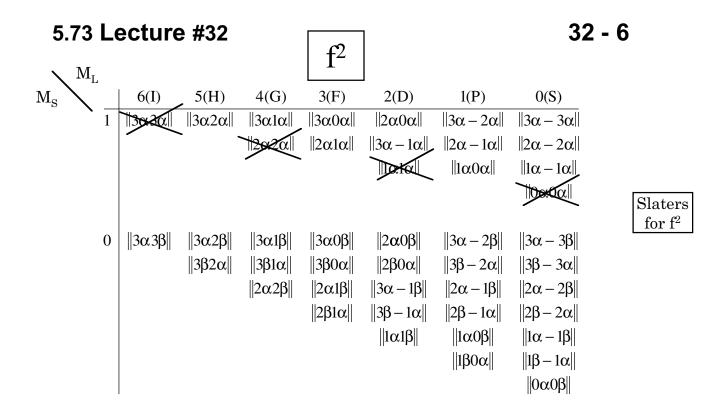
 M_L , M_S method works because:

- * each configuration generates the full (2L + 1) (2S + 1) manifold of M_L , M_S states associated with a given L,S term. Why? If you have one $|M_LM_S\rangle$ you can generate all of the others using L_+ and S_+ operators.
- * This must be true because, starting with $M_L = L$, $M_S = S$, L_a and S_c can be used to generate the full L,S term without the need to go outside the specific configuration.



$$S_{MAX} = (\# \text{ of } e^{-})/2.$$

No need to include negative values of M_S or M_L .



need not include $\rm M_S$ < 0 or $\rm M_L$ < 0 because these are identical to the $\rm M_L$ > 0 and $\rm M_S$ > 0 quadrant.

Notice that as you go down in $M_{\rm L}$, the number of Slater determinants in each $M_{\rm L},\,M_{\rm S}$ box increases only by one. This is a prerequisite for using the $L_{\rm L}$ plus orthogonality method! This useful simplicity does not occur as you go down a column in $M_{\rm S}.$

This convenient situation does not occur for d^3 or f^3 . Why? Because there are more than one L-S term of a given symmetry.

			•					No J
	S	Р	D	F	G	Η	I	Ŋ K
L=	0,	1,	2,	3,	4,	5,	6,	7

Start in <u>extreme $M_{\underline{L}}$, $M_{\underline{S}}$ corner</u> — This generally contains only one Slater determinant

$$L = M_{L_{MAX}}$$
, $S = M_{S_{MAX}}$ so we have one of the L - S terms

This L-S term	$-L \leq M_{I} \leq L$
includes one of each	L
$ m M_{L}, m M_{S}$ in the range	$-S \le M_S \le S$

This means this L-S term will "use up" the equivalent of one Slater determinant in each $\rm M_L, \rm M_S$ box

bookkeeping — cross out one Slater determinant, <u>any one</u>, from each relevant $\rm M_L, M_S$ box

now repeat, again starting at the extreme M_L, M_S corner

etc.	* 3H	3×11	= 33	
	* 1 I	1×13	=13	
	* 3F	3×7	=21	
	* 1G	1×9	=9	
	* 3P	3×3	=9	
	* 1D	1×5	=5	
	* 1 S	1×1	=1	
			91	as required!

Since there is only one Slater determinant in the $M_L = 5$, $M_S = 1$ box, generate all triplets by repeated application of $L_to || 3\alpha 2\alpha ||$ (plus orthogonality) and generate all singlets by L_o on

 $||3\alpha 3\beta||$. Many orthogonalization steps needed! Especially for singlets. Need S₋ also.

Before illustrating the ladders plus orthogonality method, it is useful to show some patterns and list some tricks.

Most difficult cases are $(n\ell)^m$ where $m = 2, 3, \dots 2\ell$.

Easy to combine $n\ell$ with $n'\ell'$ because no need for special bookkeeping.

same L-S states for 2 and 3 "holes" instead of electrons.

$$(n\ell)^{2}n'\ell'[n\ell^{2} {}^{2S+1}L] \otimes ({}^{2}\ell') = {}^{(2S+2, \text{ and } 2S)}(L+\ell', L+\ell'-1, \cdots |L-\ell'|)$$

simple vector coupling

Ladder and Orthogonality Method

 f^2 example

Start with 2 extreme <u>UNIQUE</u> states $|{}^{3}H M_{L} = 5, M_{S} = 1 \rangle = ||3\alpha 2\alpha||$

Use this to generate all triplets by applying L_ repeatedly and using orthogonality when necessary. Note that # of determinants in each $M_L, M_S=1$ box increases no faster than in steps of 1.

To get to 3P, must not only apply orthogonality several times, but must follow each L state down to the M_L = 1 box!

To get singlets, start with $| {}^{1}I M_{L} = 6, M_{S} = 0 \rangle$.

Again, as $L_{\rm L}$ takes us to successively lower $M_{\rm L}$ boxes, # of determinants increases in steps of 1. But some of these steps are due to triplets with $M_{\rm S} = 0$. Need to step triplets down into $M_{\rm S} = 0$ territory using S_ once. Lots more orthogonality steps, lots more trails being followed. AWFUL, but do-able.

Nonlecture

$$\begin{aligned} |^{3}H M_{L}M_{S} \rangle \\ \mathbf{L}_{-}|^{3}H 51 \rangle &= 2\ell_{i^{-}} \| 3\alpha 2\alpha \| \qquad \mathbf{0} \\ \hbar [5 \cdot 6 - 5 \cdot 4]^{1/2} |^{3}H 41 \rangle &= \mathbf{h} [3 \cdot 4 - 3 \cdot 2]^{1/2} \| 2\alpha 2\alpha \| + (3 \cdot 4 - 2 \cdot 1)^{1/2} \| 3\alpha 1\alpha \| \\ |^{3}H 41 \rangle &= \| 3\alpha 1\alpha \| \qquad \text{big surprise!} \\ \mathbf{L}_{-} |^{3}H 41 \rangle &= \Sigma \ell_{i^{-}} \| 3\alpha 1\alpha \| \\ |^{3}H 31 \rangle &= (1 / 3)^{1/2} \| 2\alpha 1\alpha \| + (2 / 3)^{1/2} \| 3\alpha 0\alpha \| \end{aligned}$$

orthogonality:

$$|{}^{3}F 31\rangle = \left(\frac{2}{3}\right)^{1/2} ||2\alpha 1\alpha|| - \left(\frac{1}{3}\right)^{1/2} ||3\alpha 0\alpha||$$
and so on, to get all $|{}^{3}L$
 $L 1/$ many electron functions.
 $M_{S} = 0$
Try a detour into singlet territory, and then check for self-consistency.
 $S_{-}|{}^{3}F 31\rangle = \sum_{i} s_{i} \cdot \left[\left(\frac{2}{3}\right)^{1/2} ||2\alpha 1\alpha|| - \left(\frac{1}{3}\right)^{1/2} ||3\alpha 0\alpha||\right]$
 $\hbar [1 \cdot 2 - 1 \cdot 0]^{1/2} |{}^{3}F 30\rangle = \hbar \left[\left(\frac{2}{3}\right)^{1/2} \left[\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2}\left(-\frac{1}{2}\right)\right]^{1/2} (||2\beta 1\alpha|| + ||2\alpha 1\beta||) - \left(\frac{1}{3}\right)^{1/2} [||3\beta 0\alpha|| + ||3\alpha 0\beta||]$
 $S_{-}|{}^{3}H 31\rangle = \sum_{i} s_{i} \cdot \left[\left(\frac{1}{3}\right)^{1/2} ||2\alpha 1\alpha|| + \left(\frac{2}{3}\right)^{1/2} ||3\alpha 0\alpha||\right]$
 $|{}^{3}H 30\rangle = \left(\frac{1}{6}\right)^{1/2} [||2\beta 1\alpha|| + ||2\alpha 1\beta||] - \left(\frac{1}{3}\right)^{1/2} ||3\beta 0\alpha|| + ||3\alpha 0\beta||]$

There are 4 Slater determinants in $M_L = 3$, $M_S = 0$ box. We can't find the other two singlet linear combinations uniquely without using L_{-} on the extreme singlets.

$$\begin{split} \mathbf{L}_{-} | {}^{1}I \ 60 \rangle &= \sum \ell_{i^{-}} | | 3\alpha 3\beta | | \\ \hbar [6 \cdot 7 - 6 \cdot 5]^{1/2} | {}^{1}I \ 50 \rangle &= \hbar [3 \cdot 4 - 3 \cdot 2]^{1/2} (| | 2\alpha 3\beta | | + | | 3\alpha 2\beta | |) \\ & \text{wrong order} \end{split}$$
$$| {}^{1}I \ 50 \rangle &= \left(\frac{1}{2}\right)^{1/2} [| | 3\alpha 2\beta | | - | | 3\beta 2\alpha | |] \text{orthogonality} } | {}^{3}H \ 50 \rangle &= \left(\frac{1}{2}\right)^{1/2} [| | 3\alpha 2\beta | | + | | 3\beta 2\alpha |] \\ \mathbf{L}_{-} | {}^{1}I \ 50 \rangle &= \sum \ell_{i^{-}} \left(\frac{1}{2}\right)^{1/2} [| | 3\alpha 2\beta | | - | | 3\beta 2\alpha |] \end{split}$$

32 - 10

$$|{}^{1}I 40\rangle = \left(\frac{1}{44}\right)^{1/2} \left[(10)^{1/2} \left(||3\alpha 1\beta|| - ||3\beta 1\alpha|| \right) + 6^{1/2} \left(||2\alpha 2\beta|| - ||2\beta 2\alpha|| \right) \right]$$

$$|{}^{1}I 40\rangle = \left(\frac{5}{22}\right)^{1/2} \left[\left(||3\alpha 1\beta|| - ||3\beta 1\alpha|| \right) + \left(\frac{6}{11}\right)^{1/2} ||2\alpha 2\beta|| \right]$$

$$|{}^{3}H 40\rangle = \left(\frac{1}{20}\right)^{1/2} \left[(6)^{1/2} \left(||2\alpha 2\beta|| + ||2\beta 2\alpha|| \right) + (10)^{1/2} \left(||3\alpha 1\beta|| + ||3\beta 1\alpha|| \right) \right]$$
wrong order
$$|{}^{3}H 40\rangle = \left(\frac{1}{2}\right)^{1/2} \left(||3\alpha 1\beta|| + ||3\beta 1\alpha|| \right)$$

orthogonality
$$|^{1}G 40\rangle = \left(\frac{3}{11}\right)^{1/2} \left(\left\| 3\alpha 1\beta \right\| - \left\| 3\beta 1\alpha \right\| \right) - \left(\frac{5}{11}\right)^{1/2} \left\| 2\alpha 2\beta \right\|$$

At last we are ready to enter the $M_L = 3$, $M_S = 0$ block! It is clear that if we apply L_1 to $|{}^{3}H 40\rangle$ we will get the same form we already derived starting from $|{}^{3}H 51\rangle$. Let's lower $|{}^{1}I 40\rangle$

$$\begin{split} \mathbf{L}_{-} | {}^{1}I \ 40 \rangle &= \sum_{i} \ell_{i^{-}} \left\{ \left(\frac{5}{22} \right)^{1/2} \left[\left\| 3\alpha 1\beta \right\| - \left\| 3\beta 1\alpha \right\| \right] + \left(\frac{6}{11} \right)^{1/2} \left\| 2\alpha 2\beta \right\| \right\} \\ & | {}^{1}I \ 30 \rangle = \left(30 \right)^{1/2} \left\{ \left(\frac{5}{22} \right)^{1/2} \left(6 \right)^{1/2} \left(\left\| 2\alpha 1\beta \right\| - \left\| 2\beta 1\alpha \right\| \right) + \left(\frac{5}{22} \right)^{1/2} \left(12 \right)^{1/2} \left(\left\| 3\alpha 0\beta \right\| - \left\| 3\beta 0\alpha \right\| \right) \right. \\ & \left. + \left(\frac{6}{11} \right)^{1/2} \left(10 \right)^{1/2} \left(\left\| 2\alpha 1\beta \right\| - \left\| 2\beta 1\alpha \right\| \right) \right\} \\ & \left| {}^{1}I \ 30 \rangle = \left[\left(\frac{1}{22} \right)^{1/2} + \left(\frac{4}{22} \right)^{1/2} \right] \left(\left\| 2\alpha 1\beta \right\| - \left\| 2\beta 1\alpha \right\| \right) + \left(\frac{2}{22} \right)^{1/2} \left(\left\| 3\alpha 0\beta \right\| - \left\| 3\beta 0\alpha \right\| \right) \right. \\ & \left| {}^{1}I \ 30 \rangle = \left(\frac{9}{22} \right)^{1/2} \left(\left\| 2\alpha 1\beta \right\| - \left\| 2\beta 1\alpha \right\| \right) + \left(\frac{2}{22} \right)^{1/2} \left(\left\| 3\alpha 0\beta \right\| - \left\| 3\beta 0\alpha \right\| \right) \right. \end{split}$$

Finally, by orthogonality:

IMPORTANT

$$|{}^{1}G 30\rangle = -\left(\frac{1}{11}\right)^{1/2} \left(||2\alpha 1\beta|| - ||2\beta 1\alpha||\right) + \left(\frac{9}{22}\right)^{1/2} \left(||3\alpha 0\beta|| - ||3\beta 0\alpha||\right)$$

Does this match what one would get from $\mathbf{L}_{-}|^{1}G 40\rangle$?

5.73 Lecture #32

$$\mathbf{L}_{-} | {}^{1}G 40 \rangle = \sum \ell_{i^{-}} \left\{ \left(\frac{3}{11} \right)^{1/2} [\| 3\alpha 1\beta \| - \| 3\beta 1\alpha \|] - \left(\frac{5}{11} \right)^{1/2} \| 2\alpha 2\beta \| \right\}$$

$$| {}^{1}G 30 \rangle = (8)^{-1/2} \left\{ \left(\frac{3}{11} \right)^{1/2} (6)^{1/2} (\| 2\alpha 1\beta \| - \| 2\beta 1\alpha \|) + \left(\frac{3}{11} \right)^{1/2} (12)^{1/2} (\| 3\alpha 0\beta \| - \| 3\beta 0\alpha \|) - \left(\frac{5}{11} \right)^{1/2} (10)^{1/2} (\| 2\alpha 1\beta \| - \| 2\beta 1\alpha \|) \right\}$$

$$\xrightarrow{\text{IMPORTANT}} \left| {}^{1}G 30 \rangle = -\left(\frac{1}{11} \right)^{1/2} (\| 2\alpha 1\beta \| - \| 2\beta 1\alpha \|) + \left(\frac{9}{22} \right)^{1/2} (\| 3\alpha 0\beta \| - \| 3\beta 0\alpha \|) \right)$$
checks!

End of Non-Lecture

As you see, this is extremely laborious. There is a better way!

** There are several patterns: singlets for $M_s = 0$ always have the form $(\alpha\beta - \beta\alpha)$ and triplets always $(\alpha\beta + \beta\alpha)$.

This can be generalized for any value of S (page 61 of Hélène Lefebvre-Brion-Robert Field Perturbations book) [M. Yamazaki, Sci. Rep. Kanezawa Univ. 8, 371 (1963).]

2. Failure and Inconvenience of ladder method

The ladder method is OK when you have a single target $|LM_LSM_s\rangle$ state, especially when it is near an edge of the M_L, M_S box diagram. Essential that # of Slater determinants in each M_LM_S box increases in steps of 1 as you step down in M_L or M_S .

Fails when there are 2 L-S terms of same L and S in a given configuration — must set up 2×2 secular equation anyway.

eg.
$$(nd)^{3} {}^{2}H, {}^{2}G, {}^{2}F, {}^{4}F,$$
 ${}^{2}D(2), {}^{4}P, {}^{2}P$

3. L² and S² Matrix Method

Another method is based on constructing L^2 and S^2 matrices in the Slater determinantal basis set. <u>This is no cakewalk either!</u>

Since usually $S_{MAX} << L_{MAX}$ for a configuration, it is best to start with ${\bf S}^2$ because it is simpler.