$\underline{\mathbf{e}}^{2} / \underline{\mathbf{r}}_{\mathrm{ij}}$ and Slater Sum Rule Method

LAST TIME: $1 . \mathbf{L}^{2}, \mathbf{S}^{2}$ method for setting up $\left|\mathrm{NLM}_{\mathrm{L}} \mathrm{SM}_{\mathrm{S}}\right\rangle$ many-electron basis states in terms of linear combination of Slater determinants $* \mathrm{M}_{\mathrm{L}}=0, \mathrm{M}_{\mathrm{S}}=0$ block: $\mathbf{L}^{2} \rightarrow \mathbf{L}_{+} \mathbf{L}_{-}$

$$
\mathbf{S}^{2} \rightarrow \mathbf{S}_{+} \mathbf{S}_{-}
$$

* diagonalize \mathbf{S}^{2} (singlets and triplets)
* diagonalize \mathbf{L}^{2} in same basis that diagonalizes \mathbf{S}^{2}
[Recall: to get matrix elements of \mathbf{L}^{2}, first evaluate $\mathbf{L}^{2}\left|\left\|\psi_{i}\right\|\right\rangle$ and then left multiply by $\left\langle\left\|\psi_{j}\right\|\right.$

2. coupled representations $|\mathrm{nj} \omega \ell \mathrm{s}\rangle$ and $\left|\mathrm{NJLSM}_{\mathrm{J}}\right\rangle$
3. Projection operators: automatic projection of \mathbf{L}^{2} eigenfunctions* ${ }^{*}$ remove unwanted L "part

* preserve normalization of wanted L^{\prime} part
* remove overlap factor

TODAY:

1. Slater Sum Rule Trick (trace invariance): MAIN IDEA OF LECTURE.
2. evaluate $\sum_{i>j} e^{2} / r_{i j}$ matrix elements (tedious, but good for you)
[2-e ${ }^{-}$operator, spatial coordinates only, scalar wrt J,L,S $]$

* multipole expansion of charge distribution due to "other electrons"
* matrix element selection rules for $\mathrm{e}^{2} / \mathrm{r}_{\mathrm{ij}}$ in both Slater determinantal and many-e ${ }^{-}$basis sets
* Gaunt Coefficients (c^{k}) (tabulated) and Slater-Condon ($\mathrm{F}^{\mathrm{k}}, \mathrm{G}^{\mathrm{k}}$) Coulomb and Exchange parameters. Because of sum rule, can evaluate mostly ab $\left.\left|\frac{1}{r_{i j}}\right| a b\right\rangle$ and $\langle a b| \frac{1}{r_{i j}}|\mathrm{ba}\rangle$ type matrix elements and never $\langle\mathrm{ab}| \frac{1}{\mathrm{r}_{\mathrm{ij}}}|\mathrm{cd}\rangle$
type matrix elements. type matrix elements.

3. Apply Sum Rule Method
4. Hund's 1st and 2nd Rules
5. Slater's Sum Rule Method

It is almost always possible to evaluate e^{2} / r_{ij} matrix elements without solving for all $\left|\mathrm{LM}_{\mathrm{L}} \mathrm{SM}_{\mathrm{S}}\right\rangle$ basis states.

* trace of any Hermitian matrix, expressed in ANY representation, is the sum of the eigenvalues of that matrix (thus invariant to unitary transformation)
* $\sum_{i>j} e^{2} / r_{i j}$ and every scalar operator with respect to $\hat{\mathbf{J}}$ (or $\hat{\mathbf{L}}, \hat{\mathbf{S}}$) has nonzero matrix elements diagonal in J and M_{J} (or L and M_{L}) and independent of M_{J} or $\left(\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}}\right)$
[W-E Theorem: J is a GENERIC ANGULAR MOMENTUM with respect to which e^{2} / r_{ij} is classified]

Recall from definition of r_{12}, that e^{2} / r_{ij} is a scalar operator with respect to $\hat{\mathbf{J}}, \hat{\mathbf{L}}, \hat{\mathbf{S}}$ but not with respect to $\mathbf{j}_{\mathbf{i}}$ or ℓ_{i}. Interelectronic Repulsion: $\sum_{i>j} \mathrm{e}^{2} / r_{i j}$

* destroys orbital approximation $\varnothing \$ \$$ for electronic structure calculations * "correlation energy," "shielding"

$$
\begin{aligned}
& e_{1}^{-} \text {at }\left(r_{1}, \theta_{1}, \phi_{1}\right) \\
& e_{2}^{-} \text {at }\left(r_{2}, \theta_{2}, \phi_{2}\right)
\end{aligned}
$$

$$
\vec{r}_{12}=\vec{r}_{2}-\vec{r}_{1}
$$

scalar with
respect to J ,
$\mathbf{L}, \mathbf{S}, \mathbf{s}_{\mathrm{i}}$ but

$$
r_{12}^{2}=r_{1}^{2}-2 r_{1} \cdot r_{2}+r_{2}^{2}
$$

$\operatorname{not} \mathbf{j}_{\mathrm{i}}, \boldsymbol{\ell}_{\mathrm{i}}$

$$
r_{12}=\left[r_{1}^{2}+r_{2}^{2}-2\left|r_{1} \| r_{2}\right| \cos \left(\vec{r}_{1}, \vec{r}_{2}\right)\right]^{1 / 2}
$$

expand r_{12}^{-1} as power series in $\left(\frac{r_{\leq}}{r_{>}}\right)$
where $r_{<}$is smaller of $\left|r_{1}\right|,\left|r_{2}\right|$
(integrals evaluated in 2 regions: $\quad r_{1}<r_{2}, r_{2}<r_{1}$) lengthy al gebra $\left[\begin{array}{l}\text { see Eyring, Walter, and Kimball "Quantum Chemistry" } \\ \text { pages 369-371 and, for relationship between Legendre } \\ \text { polynomials and } Y_{\ell}^{m}(\theta, \phi) \text {, pages 52-59. }\end{array}\right]$

n -pole charge distribution $\varnothing \mathrm{n}$-th rank tensor $\varnothing 2 \mathrm{n}+1$ components

No dependence on s , so $1 / \mathrm{r}_{\mathrm{ij}}$ is scalar with respect to $\mathbf{S}, \mathbf{s}_{\mathrm{i}}, \mathbf{s}_{\mathrm{j}}$.

$$
\left[\mathrm{Y}_{\mathrm{n}}^{\mathrm{m}}\left(\theta_{\mathrm{i}}, \phi_{\mathrm{i}}\right)=\left\langle\theta_{\mathrm{i}}, \phi_{\mathrm{i}} \mid \ell_{\mathrm{i}}=\mathrm{n}, \mathrm{~m}_{\ell_{\mathrm{i}}}=\mathrm{m}\right\rangle\right]
$$

The reason for this rather complicated looking expansion is that it is well suited for integrals over atomic orbitals which are expressed in terms of $r_{i}, \theta_{i}, \phi_{i}$, which are coordinates of the i-th e^{-}with respect to the center of symmetry (nucleus) rather than the other e^{-}. It enables use of AO basis states. Otherwise $1 / \mathrm{r}_{\mathrm{ij}}$ integrals would be nightmares.

Selection rules for matrix elements:

overall: $\Delta \mathrm{L}=0, \Delta \mathrm{~S}=0, \Delta \mathrm{M}_{\mathrm{L}}=0, \Delta \mathrm{M}_{\mathrm{S}}=0$, and indep. of $\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}}$
Can use any $\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}}$ from box diagram.

It is also clear how to evaluate the angular factors of the atomic orbital matrix elements using 3-j coefficients. Special tables of "Gaunt Coefficients" (also C\&S pages 178-179, Golding, page 41, see handout).
general $1 / \mathrm{r}_{\underline{12}} \underline{\text { matrix element }}(\Delta \mathrm{so}=0,1$, and 2 are possible $)$

$$
\begin{aligned}
& \left.\langle a b| \frac{1}{r_{12}}|c d\rangle=\underset{\substack{ \\
* *\left(m_{s_{a}}^{1 / r_{12} \text { does not operate }}\right. \text { on spin coodinates }}}{* *} m_{s_{c}}\right) \delta\left(m_{s_{b}}, m_{s_{d}}\right) \delta\left(m_{\ell_{a}}+m_{\ell_{b}}, m_{\ell_{c}}+m_{\ell_{d}}\right) \times \\
& \underbrace{\sum_{e_{1}^{-}}^{\infty} \underbrace{c^{k}\left(\ell_{a} m_{\ell_{a}}, \ell_{c} m_{\ell_{c}}\right)} \underbrace{c^{k}\left(\ell_{b} m_{\ell_{b}}, \ell_{d} m_{\ell_{d}}\right)}_{e_{2}^{-}}) \times 1 .}_{\substack{\text { tensor rank for } \\
\text { product of AOs }}} \\
& \text { product of } \mathrm{AOs} \\
& \text { occupied by } \mathrm{e}^{ \pm} \# 1 \\
& \text { must be same } \\
& \text { as for \# } 2 \text { for scalar } \\
& \text { product of } n \text {-th rank } \\
& \text { tensors } \\
& \text { GAUNT COEFFICIENTS - } \\
& \text { ANGULAR FACTOR OF } \\
& \text { INTEGRAL } \\
& \text { tensors } \\
& R^{k}\left(n_{a} \ell_{a} n_{b} \ell_{b} n_{c} \ell_{c} n_{d} \ell_{d}\right) \\
& \text { radial factor }
\end{aligned}
$$

restrictions on k and m: $\quad e_{1}^{-}$integral $\quad m_{\ell_{1}}^{\prime}+m=m_{\ell_{1}}$

$$
\left\langle\underset{\text { triangle rule }}{\left\langle n_{1} \ell_{1} m_{\ell_{1}}\right| Y_{k}^{m}\left|n_{1}^{\prime} \ell_{1}^{\prime} m_{\ell_{1}}^{\prime}\right\rangle}\right.
$$

for intraconfiguration matrix elements, $\mathrm{R}^{\mathrm{k}}(a b c d)$ takes on especially simple form (because the same one or two orbitals appear in the bra and in the ket).

$$
\left.\begin{array}{c}
R^{k}(a b, a b) \equiv F^{k}(a, b) \\
R^{k}(a b, b a) \equiv G^{k}(a, b)
\end{array}\right\} \begin{aligned}
& \text { "Slater - Condon" parameters } \\
& \begin{array}{l}
\text { (these are reduced matrix elements dependent only on } \ell_{\Omega} \\
\ell_{\mathrm{b}}, \ell_{c}, \ell_{\mathrm{y}} \text { and not on any of the m m quantum numbers.) All } \\
\text { L-S states from one configuration are expressed in terms } \\
\text { of the same set of } \mathrm{F}^{\mathrm{k}}, \mathrm{G}^{\mathrm{k}} \text { parameters. }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { spins must match } \\
& \langle\|a b\|| \frac{e^{2}}{r_{12}}|\|a b\|\rangle=\underset{\substack{\mathbf{J}(a, b) \\
\text { DIRECT }}}{\mathbf{J}\left(m_{s_{a}}, m_{s_{b}}\right) \mathbf{K}(a, b)} \begin{array}{c}
\text { EXCHANGE } \\
\text { or } \mathrm{K} \text { term vanishes }
\end{array}
\end{aligned}
$$

for special cases, such as $n d^{2}, n_{a} \ell_{a}=n_{b} \ell_{b}$ and $F^{k}=G^{k}$
Now we are ready to use tables of c^{k} (or, more conveniently, a^{k} and b^{k}) to set up $e^{2} / r_{i j}$ matrix

Easy example: $\mathrm{nf}^{2} \quad\left(\right.$ recall $\left.{ }^{1} \mathrm{I},{ }^{3} \mathrm{H},{ }^{1} \mathrm{G},{ }^{3} \mathrm{~F},{ }^{1} \mathrm{D},{ }^{3} \mathrm{P},{ }^{1} \mathrm{~S}\right)$

$$
\left.\begin{array}{l}
\left|{ }^{1} \boldsymbol{I} 60\right\rangle=\|3 \alpha 3 \beta\| \\
|3 \boldsymbol{H} 51\rangle=\|3 \alpha 2 \alpha\|
\end{array}\right\} \begin{aligned}
& \text { these are the only L-S states represented } \\
& \text { by a single Slater determinant - } \\
& \text { extremes of } \mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}} \text { box diagram }
\end{aligned}
$$

since $\mathrm{e}^{2 /} / \mathrm{r}_{\mathrm{ij}}$ is a scalar operator with respect to $\hat{\mathbf{L}}, \hat{\mathbf{S}}, \hat{\mathbf{J}}$, matrix elements are $\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}}$, M_{J} independent - so we can use any $\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}}$ component to evaluate the matrix element - whichever is most convenient!

$$
\begin{aligned}
& \left\langle{ }^{1} I\right| \frac{e^{2}}{r_{12}}\left|{ }^{1} I\right\rangle=\sum_{k=0,2,4, \beta} c^{k}\left(\begin{array}{c}
e_{1}^{-} \\
2 \ell \\
2 \ell \\
2 m_{\ell}
\end{array}, 33\right) c^{k}(33,33) F^{k}(n f, n f)-\underset{\substack{e_{2}^{-} \\
\text {one spin } \alpha}}{\delta(\alpha, \beta)} \sum_{k}\left[c^{k}(33,33)\right]^{2} G^{k}(n f, n f) \\
& =\sum_{k=0,2,4,6}\left[c^{k}(33,33)\right]^{2} F^{k}(n f, n f) \\
& \left\langle\begin{array}{c}
\left\langle{ }^{3} H\right| \frac{e^{2}}{r_{12}}\left|{ }^{3} H\right\rangle=\sum_{k=0,2,4,6}\left\{\left[c^{k}(33,33) c^{k}(32,32)\right] F^{k}(n f, n f)-\left[c^{k}(33,32)\right]_{\text {both spins } \alpha}^{2} G^{k}(n f, n f)\right\} \\
\boxed{e_{1}^{-}} \quad e_{2}^{-}
\end{array}\right. \\
& (a, a) \quad(b, b) \quad(a, b)
\end{aligned}
$$

Here is where everyone makes mistakes!

Use table of c^{k} in Golding/C\&S handout (C\&S page 179).
Note that $[1 / 7361 \cdot 64]^{1 / 2}$ is implicit after the first entry for $\mathrm{f}^{2}, k=6$.

	$\mathrm{k}=0$	2	4	6
$c^{k}(33,33)$	1	$-1 / 3$	$1 / 11$	$-[1 / 7361 \cdot 64]^{1 / 2}$
$c^{k}(32,32)$	1	0	$-7 / 33$	$-[6 / 7361 \cdot 64]^{1 / 2}$
$c^{k}(33,32)$	0	$+1 / 3$	$-30^{1 / 2} / 33$	$-[7 / 7361 \cdot 64]^{1 / 2}$
D_{k}	1	225	$1089=33^{2}$	$7361 \cdot 64$
$\substack{\text { convenient } \\ \text { factor }}$				

D_{k} is a factor that simplifies the expressions. Each term has the form F^{k} / D_{k}. Call this ratio F_{k}. Get simpler looking expressions when you replace F^{k} by $D_{k} F_{k}\left(D_{k}\right.$ appears in denominators of c^{k} as $\left[\ldots / \mathrm{D}_{\mathrm{k}}\right]^{1 / 2}$)

$$
\begin{aligned}
\left.\left\langle{ }^{1}\right|\left|\frac{e^{2}}{r_{12}}\right|{ }^{1} I\right\rangle & =F^{0}+\left(\frac{1}{9}\right) F^{2}+\left(\frac{1}{121}\right) F^{4}+\left(\frac{1}{7361 \cdot 64}\right) F^{6} \\
& =F_{0}+25 F_{2}+9 F_{4}+F_{6}
\end{aligned}
$$

Always have two factors of c^{k}. Thus F^{k} gets divided by D_{k} to yield F_{k}.

$$
\begin{aligned}
\left\langle{ }^{3} H\right| \frac{e^{2}}{r_{12}}\left|{ }^{3} H\right\rangle & =F^{0}+\left[\left(-\frac{1}{3}\right)(0)-(1 / 3)^{2}\right] F^{2}+\left[\left(\frac{1}{11}\right)\left(\frac{-7}{33}\right)-\frac{30}{33 \cdot 33}\right] F^{4}+\left[\frac{-6-7}{7361 \cdot 64}\right] F^{6} \\
& =F^{0}-\frac{1}{9} F^{2}-\frac{51}{(33)^{2}} F^{4} \frac{-13}{7361 \cdot 64} F^{6} \\
& =F_{0}-25 F_{2}-51 F_{4}-13 F_{6}
\end{aligned}
$$

A lot of book - keeping, but easy to learn how to use tables of $\mathrm{c}^{\mathrm{k}}, \mathrm{a}^{\mathrm{k}}, \mathrm{b}^{\mathrm{k}}, \mathrm{D}_{\mathrm{k}}$.
But it is much more work for f^{3} than for f^{2}.

SUM RULE METHOD:

Basic idea is that the sum of diagonal elements in the single Slater determinant basis set within an $\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}}$ box is equal to the sum of the eigenvalues!
Look at $M_{L}=3, M_{S}=1$ box: $\|3 \alpha 0 \alpha\|$ and $\|2 \alpha 1 \alpha\|$. This box generates $\left|{ }^{3} H 31\right\rangle$ and $\left|{ }^{3} F 31\right\rangle$, but trace is $E\left({ }^{3} H\right)+E\left({ }^{3} F\right)$ and we already know $E\left({ }^{3} H\right)$!
So

$$
\begin{aligned}
E\left({ }^{1} I\right) & =\langle\|3 \alpha 3 \beta\|\rangle \\
E\left({ }^{3} H\right) & =\langle\|3 \alpha 2 \alpha\|\rangle \\
E\left({ }^{3} F\right) & =\langle\|3 \alpha 0 \alpha\|\rangle+\langle\|2 \alpha 1 \alpha\|\rangle-E\left({ }^{3} H\right) \\
E\left({ }^{1} G\right) & =\langle\|3 \alpha 1 \beta\|\rangle+\langle\|3 \beta 1 \alpha\|\rangle+\langle\|2 \alpha 2 \beta\|\rangle-E\left({ }^{1} I\right)-E\left({ }^{3} H\right) \\
E\left({ }^{1} D\right) & =\langle\|3 \alpha-1 \beta\|\rangle+\langle\|3 \beta-1 \alpha\|\rangle+\langle\|2 \alpha 0 \beta\|\rangle+\langle\|2 \beta 0 \alpha\|\rangle \\
& +\langle\|1 \alpha 1 \beta\|\rangle-E\left({ }^{1} I\right)-E\left({ }^{1} G\right)-E\left({ }^{3} H\right)-E\left({ }^{3} F\right) \\
E\left({ }^{3} P\right) & =\langle\|3 \alpha-2 \alpha\|\rangle+\langle\|2 \alpha-1 \alpha\|\rangle+\langle\|1 \alpha 0 \alpha\|\rangle-E\left({ }^{3} H\right)-E\left({ }^{3} F\right) \\
E\left({ }^{1} S\right) & =\operatorname{sum} \text { of seven }\left\langle\|\|\rangle-\operatorname{sum} \text { of six } E\left({ }^{2 S+1} L\right)\right.
\end{aligned}
$$

5.73 Lecture \#34

34-9
This seems rather laborious, but it is much easier than:

* generating each $\left|\mathrm{LM}_{\mathrm{L}}=\mathrm{L} \mathrm{SM}_{\mathrm{S}}=\mathrm{S}\right\rangle$ as an explicit linear combination of Slater determinants
* then calculating matrix elements of $\mathrm{e}^{2} / \mathrm{r}_{\mathrm{ij}}$, because there are many nonzero offdiagonal matrix elements between Slater determinants in the same M_{L}, M_{S} box.

Here is the final result for the energies of all (nf) ${ }^{2}{ }^{2 S+1} \mathrm{~L}$ terms:

$$
\begin{aligned}
& E=E^{(0)}+E^{(1)}+E^{(2)} \\
& E^{(0)}=\text { sum of orbital energies from } h^{(0)}=-\frac{Z^{2} \Re}{n^{2}}=\varepsilon_{n \ell} \\
& E^{(1)}=\underbrace{\left\langle e^{2} / r_{i j}\right\rangle}_{\text {ready now }}+\underbrace{\left\langle\mathbf{H}^{\mathrm{SO}}\right\rangle}_{\text {next lecture }} \\
& E^{(2)}=(\text { intraconfigurational spin-orbit })+\left(\text { interconfigurational } e^{2} / r_{i j}\right) \\
& \text { For } n f^{2}
\end{aligned}
$$

(there is NO center of Gravity Rule for degeneracy weighted L-S terms)

5.73 Lecture \#34

Now it is easy to show that all F_{k} 's are >0 and $\mathrm{F}_{\mathrm{k}} \gg \mathrm{F}_{\mathrm{k}+2}$ etc. (roughly factor of 10 per step in k)

From this we get an empirical rule

Lowest E of all L-S terms is the one with

* MAXIMUM S
* of those with Maximum S, lowest is the one with MAXIMUM L

These are Hund's first and second (of three) rules.

Note also that Hund's rules do nothing about predicting the energy order of L-S terms except for the identity of the single, lowest energy L-S term.

5.73 Lecture \#34

Nonlecture

There are several interesting problems also solved by this $\mathrm{e}^{2} / \mathrm{r}_{\mathrm{ij}}$ formalism.

1. Energy splittings between and Slater determinantal characters of two or more L,S terms of the same L and S that belong to the same L, S configuration
e.g. $d^{3} \rightarrow$ two ${ }^{2} D$ terms
see pages 47-50 of Golding for 2×2 secular determinant for ${ }^{2} D$ of d^{3}
2. matrix elements of $\mathrm{e}^{2} / \mathrm{r}_{\mathrm{ij}}$ between same-L,S terms that belong to two different configurations
e.g. $\mathrm{nd}^{2} \quad{ }^{1} S,{ }^{3} P,{ }^{1} D,{ }^{3} F, G$

$$
\text { ndn'd }\left\{\begin{array}{l}
{ }^{1} S,{ }^{3} P,{ }^{1} D,{ }^{3} F, G \\
{ }^{3} S,{ }^{1} P,{ }^{3} D,{ }^{1} F,{ }^{3} G
\end{array}\right\} \text { no Pauli restrictions }
$$

so there will be $\quad{ }^{1} S \sim{ }^{1} S$

$$
\begin{aligned}
& { }^{3} P \sim{ }^{3} P \\
& { }^{1} D \sim{ }^{1} D \\
& { }^{3} F \sim{ }^{3} F \\
& { }^{1} G \sim{ }^{1} G
\end{aligned}
$$

interconfigurational CI's, and each of these 5 interaction matrix elements will NOT be of the same magnitude.

