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updated September 19,

e2/rij and Slater Sum Rule Method

LAST TIME: 1. L2,S2 method for setting up NLMLSMS〉 many-electron basis
states in terms of linear combination of Slater determinants
* ML = 0, MS = 0 block:

* diagonalize S2 (singlets and triplets)
* diagonalize L2 in same basis that diagonalizes S2

[Recall:  to get matrix elements of L2, first evaluate L2

and then left multiply by
2. coupled representations  njωls〉 and  NJLSMJ〉
3. Projection operators:  automatic projection of L2

eigenfunctions�* remove unwanted L ″ part

* preserve normalization of wanted L′ part
* remove overlap factor
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TODAY:

1. Slater Sum Rule Trick (trace invariance):  MAIN IDEA OF LECTURE.
2. evaluate (tedious, but good for you)

[2-e– operator, spatial coordinates only, scalar wrt J,L,S]

* multipole expansion of charge distribution  due to “other electrons”
* matrix element selection rules for e2/rij in both Slater determinantal and
many-e– basis sets
* Gaunt Coefficients (ck) (tabulated) and Slater-Condon (Fk,Gk) Coulomb and
Exchange parameters.  Because of sum rule, can evaluate mostly
 type matrix elements and never
type matrix elements.

3. Apply Sum Rule Method
4. Hund’s 1st and 2nd Rules
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1.  Slater’s Sum Rule Method
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It is almost always possible to evaluate e2/rij matrix elements without

solving for all |LMLSMS〉 basis states.

* trace of any Hermitian matrix, expressed in ANY representation, is
the sum of the eigenvalues of that matrix (thus invariant to unitary
transformation)

* e rij
i j

2 /
>
∑  and every scalar operator with respect to ˆ ˆ ˆJ L,S) (or  has

nonzero matrix elements diagonal in J and MJ (or L and ML) and
independent of MJ or (ML,MS)

[W-E Theorem:  J is a GENERIC ANGULAR MOMENTUM with
respect to which e2/rij is classified]

Recall from definition of r12, that e2/rij is a scalar operator with respect to
ˆ ˆ ˆJ,  L,  S  but not with respect to ji or lllli.

* destroys orbital approximation ∅ $$ for electronic structure calculations
* “correlation energy,” “shielding”
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expand  as power series in 

where  is smaller of 

integrals evaluated in 2 regions : 
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not principal
q.n.!

convergent
series

angular momenta
magnitude n, projection m

scalar  product of 2 angular momenta, one
for i-th particle, one for j-th

multipole
expansion

    

lengthy algebra see Eyring,  Walter,  and Kimball “Quantum Chemistry”
pages 369 - 371 and,  for relationship between Legendre 

polynomials and  pages 52 - 59.Y m
l

θ φ, ,( )

















2n-pole moment (n=0 monopole, n=1 dipole,…)

  

No dependence on s, so 1 / r  is scalar with respect to ,   ij i jS s s, .

, , ,Y n m mn
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* converts m to –m

n-pole charge distribution ∅ n-th rank tensor ∅ 2n+1 components
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The reason for this rather complicated looking expansion is that it is
well suited for integrals over atomic orbitals which are expressed in
terms of ri, θi, φi, which are coordinates of the i-th e– with respect to the
center of symmetry (nucleus) rather than the other e–.  It enables use of
AO basis states.  Otherwise 1/rij integrals would be nightmares.

overall:  ∆L = 0, ∆S = 0, ∆ML = 0, ∆MS = 0, and indep. of ML, MS

Can use any ML, MS from box diagram.

Selection rules for matrix elements:

not principal q. n.
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term in multipole expansion

  
triangle rule,  l l l li i i in− ′ ≤ ≤ + ′

(steps of 2 because of parity)

It is also clear how to evaluate the angular factors of the atomic orbital matrix
elements using 3-j coefficients.  Special tables of “Gaunt Coefficients” (also C&S
pages 178-179, Golding, page 41, see handout).
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general 1/r12 matrix element (∆so = 0, 1, and 2 are possible)
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on spin coodinates
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GAUNT COEFFICIENTS —
ANGULAR FACTOR OF
INTEGRAL

radial factor

tabulated Clebsch-Gordan coefficients
that result from integral
over product of 3 spherical
harmonics — one from
operator, two from orbitals
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for intraconfiguration matrix elements, Rk(abcd) takes on especially simple
form (because the same one or two orbitals appear in the bra and in the ket).
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Now we are ready to use tables of  (or,  more conveniently,   and 
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(these are reduced matrix elements dependent only on la,
lb, lc, ld and not on any of the m

l
 quantum numbers.)  All

L-S states from one configuration are expressed in terms
of the same set of Fk, Gk parameters.

a a Opb b d d* ( ) ( ) ˆ * ( ) ( )1 1 2 2 1 2τ τ∫∫[ ]
charge distributions

a b Opa b d d* ( ) ( ) ˆ ( ) * ( )1 1 2 2 1 2τ τ∫∫[ ]
something else!
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these are the only L-S states represented
by a  single Slater determinant —
extremes of ML,MS box diagram

since e2/rij is a scalar operator with respect to    ,  matrix elements are ML, MS,
MJ independent — so we can use any ML,MS component to evaluate the matrix
element — whichever is most convenient!

ˆ ,  ˆ,  ˆL S J

2l
= 0

F nfk 2( )

Use table of ck in Golding/C&S handout (C&S page 179).

Note that [1/7361•64]1/2 is implicit after the first entry for f2, k = 6.

convenient
factor

Easy example:  nf recall I, H, G, F, D, P, S2 1 3 1 3 1 3 1( )

1

3

60 3 3

51 3 2

I

H

=

=







α β

α α

    

3
2

12

3

0 2 4 6

2

33 33 32 32 33 32H
e
r

H c c F nf nf c G nf nf
k

k k k k k= ( ) ( )[ ] ( ) − ( )[ ] ( ){ }
=
∑
, , ,

, , , , ,

e1
−

e1
−

e2
−

e2
−

lm
l

one spin α
other spin β

both spins α

Fk(nf2)

k = 0 2 4 6

ck(33,33) 1 –1/3 1/11 –[1/7361•64]1/2

ck(32,32) 1 0 –7/33 –[6/7361•64]1/2

ck(33,32) 0 +1/3 –301/2/33 –[7/7361•64]1/2

Dk 1 225 1089 = 332 7361•64

(a,a) (b,b) (a,b)

Here is where everyone makes mistakes!
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Dk is a factor that simplifies the expressions.  Each term has the form Fk/Dk.  Call
this ratio Fk.  Get simpler looking expressions when you replace Fk by DkFk (Dk
appears in denominators of ck as […/Dk]1/2 )

SUM RULE METHOD:

Basic idea is that the sum of diagonal elements in the single Slater determinant basis
set within an ML, MS box is equal to the sum of the eigenvalues!

  

Look at  box:   3 0  and 2 1 This box generates  and ,  

but trace is  and we already know !
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Always have two
factors of ck.  Thus Fk

gets divided by Dk to
yield Fk.

A lot of book – keeping,  but easy to learn how to use tables of c ,  a ,  b ,  D

But it is much more work for f  than for f .
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This seems rather laborious, but it is much easier than:
* generating each LML = L  SMS = S〉 as an explicit linear combination of Slater

determinants
* then calculating matrix elements of e2/rij, because there are many nonzero off-

diagonal matrix elements between Slater determinants in the same ML,MS box.

Here is the final result for the energies of all (nf)2 2S+1L terms:

CI

For nf2

shielded-core
configurational

energy

intraconfiguration L-S term splittings

(there is NO center of Gravity Rule for degeneracy weighted L-S terms)
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 sum of orbital energies from 

intraconfigurational spin - orbit interconfigurational 

ready now

SO

next lecture

ε
l

123
123H

+ + 25 + 9 + 

+ – 25 – 51 – 13

+ – 30 + 97 + 78

+ – 10 – 33 – 286

+ + 19 – 99 + 715

+ + 45 + 33 – 1287

+ + 60 + 198 + 1716

1I 2 nfε F nf0
2( ) F nf2

2( ) F nf4
2( ) F nf6

2( )
3 H 2 nfε F0 F2 F4 F6

1G 2 nfε F0 F2 F4 F6

3 F 2 nfε F0 F2 F4 F6

1D 2 nfε F0 F2 F4 F6

3 P 2 nfε F0 F2 F4 F6

1S 2 nfε F0 F2 F4 F6

shielded
by all filled
subshells

shielded
by same
subshell

Bare nucleus
hydrogenic orbital
energy — or partly
shielded by filled shells.
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Lowest E of all L–S terms is the one with

* MAXIMUM S
* of those with Maximum S, lowest is the one with MAXIMUM L

These are Hund’s first and second (of three) rules.

Note also that Hund’s rules do nothing about predicting the energy order of L-S terms
except for the identity of the single, lowest energy L-S term.

Now it is easy to show that all Fk’s are > 0 and Fk >> Fk+2 etc. (roughly factor of 10
per step in k)

From this we get an empirical rule
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Nonlecture

There are several interesting problems also solved by this e2/rij formalism.

1. Energy splittings between and Slater determinantal characters of two or more L,S
terms of the same L and S that belong to the same L,S configuration

2. matrix elements of e2/rij between same–L,S terms that belong to two different
configurations

e.g. nd

ndn d no Pauli restrictions
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interconfigurational CI’s, and each of these 5 interaction matrix elements will
NOT be of the same magnitude.

  

e.g.  d  two D terms

see pages 47 - 50 of Golding for 2  2 secular determinant for D of d
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