<u>e²/r_{ii} and Slater Sum Rule Method</u>

> * diagonalize \mathbf{S}^2 (singlets and triplets) * diagonalize \mathbf{L}^2 in same basis that diagonalizes \mathbf{S}^2 [Recall: to get matrix elements of \mathbf{L}^2 , first evaluate $\mathbf{L}^2 ||| \Psi_i || \rangle$ and then left multiply by $\langle || \Psi_j || ||$

- 2. coupled representations $|nj\omega\ell s\rangle$ and $|NJLSM_{J}\rangle$
- 3. Projection operators: automatic projection of L² eigenfunctions^{*} remove unwanted L " part

* preserve normalization of wanted L' part

* remove overlap factor

TODAY:

- 1. Slater Sum Rule Trick (trace invariance): MAIN IDEA OF LECTURE.
- 2. evaluate $\sum_{i>i} e^2/r_{ij}$ matrix elements (tedious, but good for you)

[2-e⁻ operator, spatial coordinates only, scalar wrt J,L,S]

* multipole expansion of charge distribution due to "other electrons" * matrix element selection rules for e^2/r_{ij} in both Slater determinantal and many- e^- basis sets

* Gaunt Coefficients (c^k) (tabulated) and Slater-Condon (F^k,G^k) Coulomb and Exchange parameters. Because of sum rule, can evaluate mostly $\left\langle ab \left| \frac{1}{r_{ij}} \right| ab \right\rangle$ and $\left\langle ab \left| \frac{1}{r_{ij}} \right| ba \right\rangle$ type matrix elements and never $\left\langle ab \left| \frac{1}{r_{ij}} \right| cd \right\rangle$ type matrix elements.

- 3. Apply Sum Rule Method
- 4. Hund's 1st and 2nd Rules

1. <u>Slater's Sum Rule Method</u>

It is almost always possible to evaluate e^2/r_{ij} matrix elements without solving for all $|LM_LSM_S\rangle$ basis states.

- * trace of any Hermitian matrix, expressed in ANY representation, is the sum of the eigenvalues of that matrix (thus invariant to unitary transformation)
- * $\sum_{i>j} e^2 / r_{ij}$ and every scalar operator with respect to $\hat{\mathbf{J}}$ (or $\hat{\mathbf{L}}, \hat{\mathbf{S}}$) has nonzero matrix elements *diagonal* in L and M (or L and M) and

nonzero matrix elements diagonal in J and $M_{\rm J}$ (or L and $M_{\rm L})$ and independent of $M_{\rm J}$ or $(M_{\rm L},\!M_{S})$

[W-E Theorem: **J** is a GENERIC ANGULAR MOMENTUM with respect to which e^2/r_{ij} is classified]

Recall from definition of r_{12} , that e^2/r_{ij} is a scalar operator with respect to \hat{J} , \hat{L} , \hat{S} but not with respect to j_i or ℓ_i .

Interelectronic Repulsion: $\sum_{i>j} e^2/r_{ij}$

* destroys orbital approximation \varnothing \$\$ for electronic structure calculations * "correlation energy," "shielding"

updated September 19,

expand r_{12}^{-1} as power series in $\left(\frac{r_{<}}{r}\right)$

where $r_{<}$ is smaller of $|r_1|, |r_2|$

(integrals evaluated in 2 regions : $r_1 < r_2, r_2 < r_1$)

lengthy algebra see Eyring, Walter, and Kimball "Quantum Chemistry" pages 369 - 371 and, for relationship between Legendre polynomials and $Y_{\ell}^{m}(\theta,\phi)$, pages 52 - 59.

n-pole charge distribution \varnothing n-th rank tensor \varnothing 2n+1 components

No dependence on s, so $1/r_{ij}$ is scalar with respect to S, \mathbf{s}_i , \mathbf{s}_j . $\begin{bmatrix} \mathbf{Y}_n^m(\boldsymbol{\theta}_i, \boldsymbol{\phi}_i) = \left\langle \boldsymbol{\theta}_i, \boldsymbol{\phi}_i \middle| \ell_i = n, m_{\ell_i} = m \right\rangle \end{bmatrix}$ The reason for this rather complicated looking expansion is that it is well suited for integrals over atomic orbitals which are expressed in terms of r_i , θ_i , ϕ_i , which are coordinates of the i-th e⁻ with respect to the center of symmetry (nucleus) rather than the other e⁻. It enables use of AO basis states. Otherwise $1/r_{ij}$ integrals would be nightmares.

Selection rules for matrix elements:

$$\begin{array}{l} \text{not principal q. n.} \\ \textbf{orbitals} \begin{cases} \left| \Delta \ell_{\mathbf{i}} \right| \leq n \\ \left| \Delta \ell_{\mathbf{j}} \right| \leq n \\ \left| \Delta \ell_{\mathbf{j}} \right| \leq n \\ \left| \Delta \ell_{\mathbf{j}} \right| \leq n \\ \textbf{triangle rule}, \left| \ell_{\mathbf{i}} - \ell_{\mathbf{i}}' \right| \leq n \leq \ell_{\mathbf{i}} + \ell_{\mathbf{i}}' \\ \end{array} \right. \\ \begin{array}{l} \textbf{not principal q. n.} \\ \Delta m_{\ell_{i}} = m \\ \textbf{triangle rule}, \left| \Delta m_{s_{i}} \right| \leq n \\ \textbf{triangle rule}, \left| \ell_{\mathbf{i}} - \ell_{\mathbf{i}}' \right| \leq n \leq \ell_{\mathbf{i}} + \ell_{\mathbf{i}}' \\ \end{array} \\ \begin{array}{l} \textbf{(steps of 2 because of parity)} \end{array}$$

overall: $\Delta L = 0$, $\Delta S = 0$, $\Delta M_L = 0$, $\Delta M_S = 0$, and indep. of M_L , M_S Can use any M_L , M_S from box diagram.

It is also clear how to evaluate the angular factors of the atomic orbital matrix elements using 3-j coefficients. Special tables of "Gaunt Coefficients" (also C&S pages 178-179, Golding, page 41, see handout).

general $1/r_{12}$ matrix element (Δ so = 0, 1, and 2 are possible)

$$\begin{split} \left\langle \|ab\| \|1/r_{12}\| \|cd\| \right\rangle &= \left\langle \|ab\| \left| \frac{1}{r_{12}} \right| \|cd\| \right\rangle - \left\langle \|ab\| \left| \frac{1}{r_{12}} \right| \|dc\| \right\rangle \\ \left\langle ab \left| \frac{1}{r_{12}} \right| cd \right\rangle &= \left\langle \left(m_{s_a}, m_{s_c} \right) \delta(m_{s_b}, m_{s_d}) \delta(m_{\ell_a} + m_{\ell_b}, m_{\ell_c} + m_{\ell_d}) \right) \times \\ \times \star^{1/r_{12} \text{ does not operate }} \times \star^{1/r_{12} \text{ scalar with respect to }} \frac{1/r_{12} \text{ scalar with respect to }}{\ell_{12} = \ell_1 + \ell_2} \end{split}$$

radial factor

$$\underline{c^k(\ell m_\ell, \ell' m_{\ell'})}_{\text{tabulated}} \equiv \left[\frac{2\ell'+1}{2\ell+1}\right]^{1/2}$$

$$A_{000}^{k\ell\ell'}A_{m_\ell-m'_\ell\,,m'_\ell\,,-m_\ell}^{k\ell'\ell}$$

Clebsch-Gordan coefficients that result from integral over product of 3 spherical harmonics — one from operator, two from orbitals

triangle rule:

 $\begin{aligned} |\ell - \ell'| &\leq k \leq \ell + \ell' \\ \ell + \ell' + k = even \end{aligned}$

(from properties of
$$A_{000}^{k\ell\ell'}$$
) (parity)

updated September 19,

restrictions on k and m:

$$\begin{array}{c}
e_{1}^{-} \text{ integral} & m_{\ell_{1}}^{\prime} + m = m_{\ell_{1}} \\
\begin{pmatrix}
n_{1}\ell_{1}m_{\ell_{1}} | Y_{k}^{m} | n_{1}^{\prime}\ell_{1}^{\prime}m_{\ell_{1}}^{\prime} \\
\downarrow & \downarrow \\
\text{triangle rule} \\
\end{array}$$

for <u>intra</u>configuration matrix elements, $R^k(abcd)$ takes on especially simple form (because the same one or two orbitals appear in the bra and in the ket).

$$R^{k}(ab,ab) \equiv F^{k}(a,b)$$

$$R^{k}(ab,ba) \equiv G^{k}(a,b)$$
"Slater – Condon" parameters
(these are reduced matrix elements dependent only on ℓ_{a} ,
 $\ell_{b}, \ell_{c}, \ell_{d}$ and not on any of the m _{ℓ} quantum numbers.) All
L-S states from one configuration are expressed in terms
of the same set of F^k, G^k parameters.

sning must match

$$\left\langle \|ab\| \left| \frac{e^2}{r_{12}} \right\| \|ab\| \right\rangle = \mathbf{J}(a,b) - \delta(m_{s_a},m_{s_b}) \mathbf{K}(a,b)$$

DIRECT EXCHANGE

$$\mathbf{J}(a,b) = \left\langle \mathbf{a}b \middle| \frac{e^{2}}{r_{12}} \middle| \mathbf{a}b \right\rangle = \sum_{k=0}^{\infty} c^{k} \left(\ell_{a}m_{\ell_{a}}, \ell_{a}m_{\ell_{a}}\right) c^{k} \left(\ell_{b}m_{\ell_{b}}, \ell_{b}m_{\ell_{b}}\right) \times F^{k} \left(n_{a}\ell_{a}, n_{b}, \ell_{b}\right)$$

$$\frac{a^{k} \left(\ell_{a}m_{\ell_{a}}, \ell_{b}m_{\ell_{b}}\right)}{\left[\iint a^{*}(1)a(1)\hat{O}pb^{*}(2)b(2)d\tau_{1}d\tau_{2}\right]}$$

$$\mathbf{K}(a,b) = \left\langle \mathbf{a}b \middle| \frac{e^{2}}{r_{12}} \middle| ba \right\rangle = \delta \left(m_{s_{a}}, m_{s_{b}}\right) \sum_{k=0}^{\infty} \left[c^{k} \left(\ell_{a}m_{\ell_{a}}, \ell_{b}m_{\ell_{b}}\right) \right]^{2} G^{k} \left(n_{a}\ell_{a}, n_{b}\ell_{b}\right)$$

$$\left[\iint a^{*}(1)b(1)\hat{O}pa(2)b^{*}(2)d\tau_{1}d\tau_{2}\right]$$

$$\int b^{k} \left(\ell_{a}m_{\ell_{a}}, \ell_{b}m_{\ell_{b}}\right) \int b^{k} \left(\ell_{a}m_{\ell_{a}}, \ell_{b}m_{\ell_{b}}\right) \right]$$

$$\left[\iint a^{*}(1)b(1)\hat{O}pa(2)b^{*}(2)d\tau_{1}d\tau_{2}\right]$$
something else!

for special cases, such as nd^2 , $n_a \ell_a = n_b \ell_b$ and $F^k = G^k$

Now we are ready to use tables of c^k (or, more conveniently, a^k and b^k) to set up e^2/r_{ij} matrix

34 - 6

Easy example: nf²

-

(recall ¹I, ³H, ¹G, ³F, ¹D, ³P, ¹S)

$$\begin{vmatrix} {}^{1}I \ 60 \end{pmatrix} = \begin{vmatrix} 3\alpha 3\beta \end{vmatrix}$$
these are the only L-S states represented by a single Slater determinant — extremes of M_L,M_S box diagram

since e^2/r_{ij} is a scalar operator with respect to $\hat{L}, \ \hat{S}, \ \hat{J}$, matrix elements are M_L, M_S, M_J independent — so we can use any M_L, M_S component to evaluate the matrix element — whichever is most convenient!

Here is where everyone makes mistakes!

Use table of c^k in Golding/C&S handout (C&S page 179).

Note that $[1/7361 \cdot 64]^{1/2}$ is implicit after the first entry for f^2 , k = 6.

$$k = 0 \qquad 2 \qquad 4 \qquad 6$$

$$c^{k}(33,33) \qquad 1 \qquad -1/3 \qquad 1/11 \qquad -[1/7361 \cdot 64]^{1/2}$$

$$c^{k}(32,32) \qquad 1 \qquad 0 \qquad -7/33 \qquad -[6/7361 \cdot 64]^{1/2}$$

$$c^{k}(33,32) \qquad 0 \qquad +1/3 \qquad -30^{1/2}/33 \qquad -[7/7361 \cdot 64]^{1/2}$$

$$D_{k} \qquad 1 \qquad 225 \qquad 1089 = 33^{2} \qquad 7361 \cdot 64$$

$$\underbrace{convenient}_{factor}$$

 D_k is a factor that simplifies the expressions. Each term has the form F^k/D_k . Call this ratio F_k . Get simpler looking expressions when you replace F^k by D_kF_k (D_k appears in denominators of c^k as $[.../D_k]^{1/2}$)

$$\left\langle {}^{1}I \left| \frac{e^{2}}{r_{12}} \right| {}^{1}I \right\rangle = F^{0} + \left(\frac{1}{9} \right) F^{2} + \left(\frac{1}{121} \right) F^{4} + \left(\frac{1}{7361 \cdot 64} \right) F^{6}$$
 Always have two factors of c^k. Thus F^k gets divided by D_k to yield F_k.

$$= F_{0} + 25F_{2} + 9F_{4} + F_{6}$$
 ($\left| \frac{e^{2}}{r_{12}} \right|^{3}H \right\rangle = F^{0} + \left[\left(-\frac{1}{3} \right) (0) - \left(\frac{1}{3} \right)^{2} \right] F^{2} + \left[\left(\frac{1}{11} \right) \left(\frac{-7}{33} \right) - \frac{30}{33 \cdot 33} \right] F^{4} + \left[\frac{-6 - 7}{7361 \cdot 64} \right] F^{6}$
$$= F^{0} - \frac{1}{9} F^{2} - \frac{51}{(33)^{2}} F^{4} \frac{-13}{7361 \cdot 64} F^{6}$$

$$= F_{0} - 25F_{2} - 51F_{4} - 13F_{6}$$

A lot of book – keeping, but easy to learn how to use tables of c^k , a^k , b^k , D_k . But it is much more work for f^3 than for f^2 .

SUM RULE METHOD:

Basic idea is that the sum of diagonal elements in the single Slater determinant basis set within an M_L , M_S box is equal to the sum of the eigenvalues!

Look at $M_L = 3, M_S = 1$ box: $||3\alpha 0\alpha||$ and $||2\alpha 1\alpha||$. This box generates $|{}^{3}H 31\rangle$ and $|{}^{3}F 31\rangle$, but trace is $E^{(3}H) + E^{(3}F)$ and we already know $E^{(3}H)!$ So $E^{(1}I) = \langle ||3\alpha 3\beta|| \rangle$ $E^{(3}H) = \langle ||3\alpha 2\alpha|| \rangle$ $E^{(3}F) = \langle ||3\alpha 0\alpha|| \rangle + \langle ||2\alpha 1\alpha|| \rangle - E^{(3}H)$ $E^{(1}G) = \langle ||3\alpha 1\beta|| \rangle + \langle ||3\beta 1\alpha|| \rangle + \langle ||2\alpha 2\beta|| \rangle - E^{(1}I) - E^{(3}H)$ $E^{(1}D) = \langle ||3\alpha - 1\beta|| \rangle + \langle ||3\beta - 1\alpha|| \rangle + \langle ||2\alpha 0\beta|| \rangle + \langle ||2\beta 0\alpha|| \rangle$ $+ \langle ||1\alpha 1\beta|| \rangle - E^{(1}I) - E^{(1}G) - E^{(3}H) - E^{(3}F)$ $E^{(3}P) = \langle ||3\alpha - 2\alpha|| \rangle + \langle ||2\alpha - 1\alpha|| \rangle + \langle ||1\alpha 0\alpha|| \rangle - E^{(3}H) - E^{(3}F)$ $E^{(1}S) =$ sum of seven $\langle || || \rangle$ - sum of six $E^{(2S+1}L)$ updated September 19.

This seems rather laborious, but it is much easier than:

- * generating each $|LM_L = L SM_S = S\rangle$ as an explicit linear combination of Slater determinants
- * then calculating matrix elements of e^2/r_{ij} , because there are many nonzero offdiagonal matrix elements between Slater determinants in the same M_L, M_S box.

Here is the final result for the energies of all $(nf)^{2} {}^{2S+1}L$ terms:

$$E = E^{(0)} + E^{(1)} + E^{(2)}$$

$$E^{(0)} = \text{ sum of orbital energies from } h^{(0)} = -\frac{Z^2 \Re}{n^2} = \varepsilon_{nl}$$
Bare nucleus
hydrogenic orbital
energy — or partly
shielded by filled shells.

$$E^{(1)} = \left\langle \frac{e^2}{r_{ij}} \right\rangle + \left\langle \frac{\mathbf{H}^{SO}}{\mathbf{n}^2} \right\rangle$$

$$E^{(2)} = \left(\text{intraconfigurational spin - orbit} \right) + \left(\text{interconfigurational } e^2/r_{ij} \right)$$
CI
For nf^2 shielded
by all filled
ubshells
 ^1I $2\varepsilon_{nf} + F_0(nf^2) + 25F_2(nf^2) + 9F_4(nf^2) + F_6(nf^2)$
 ^3H $2\varepsilon_{nf} + F_0 - 25F_2 - 51F_4 - 13F_6$
 ^1G $2\varepsilon_{nf} + F_0 - 30F_2 + 97F_4 + 78F_6$

		2 (0)	4(0)	0(0)
³ H	$2\varepsilon_{\rm nf}$ + F_0	$-25 F_2$	$-51 F_4$	$-13F_{6}$
1 G	$2\varepsilon_{\rm nf}$ + F_0	$-30 F_2$	+ 97 F_4	$+78 F_{6}$
³ F	$2\varepsilon_{\rm nf}$ + F_0	$-10 F_{2}$	$-33 F_4$	$-286 F_{6}$
$^{1}\mathbf{D}$	$2\varepsilon_{\rm nf}$ + F_0	$+ 19 F_2$	$-99 F_4$	$+715 F_{6}$
³ P	$2\varepsilon_{\rm nf}$ + F_0	$+45 F_{2}$	$+ 33 F_4$	$-1287 F_{6}$
1 S	$2\varepsilon_{\rm nf}$ + F_0	$+ 60 F_2$	$+ 198 F_4$	$+ 1716 F_{6}$
	shielded-core configurational energy	tional		

(there is \underline{NO} center of Gravity Rule for degeneracy weighted L-S terms)

Now it is easy to show that all F_k 's are > 0 and $F_k >> F_{k+2}$ etc. (roughly factor of 10 per step in k)

From this we get an **empirical rule**

Lowest E of all L-S terms is the one with

- * MAXIMUM S
- * of those with Maximum S, lowest is the one with MAXIMUM L

These are <u>Hund's</u> **first** and **second** (of three) <u>rules</u>.

Note also that Hund's rules do nothing about predicting the energy order of L-S terms <u>except</u> for the identity of the single, lowest energy L-S term.

Nonlecture

There are several interesting problems also solved by this e^2/r_{ij} formalism.

1. Energy splittings between and Slater determinantal characters of two or more L,S terms of the same L and S that belong to the same L,S configuration

e.g. $d^3 \to \, two \,\,^2D$ terms see pages 47 - 50 of Golding for 2 $\,\times\,$ 2 secular determinant for 2D of d^3

2. matrix elements of e^2/r_{ij} between same–L,S terms that belong to two different configurations

e.g.
$$nd^2$$
 ${}^{1}S, {}^{3}P, {}^{1}D, {}^{3}F, {}^{1}G$
 $ndn'd \begin{cases} {}^{1}S, {}^{3}P, {}^{1}D, {}^{3}F, {}^{1}G \\ {}^{3}S, {}^{1}P, {}^{3}D, {}^{1}F, {}^{3}G \end{cases}$ no Pauli restrictions

so there will be
$${}^{1}S \sim {}^{1}S$$

 ${}^{3}P \sim {}^{3}P$
 ${}^{1}D \sim {}^{1}D$
 ${}^{3}F \sim {}^{3}F$
 ${}^{1}G \sim {}^{1}G$

interconfigurational CI's, and each of these 5 interaction matrix elements will NOT be of the same magnitude.