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updated September 19,

NEXT TIME: e– in solids

(CTDL, pages 1156-1168)

LAST TIME:

TODAY:

Landé interval rule (assignment!)

    ζ ζN L S n, ,( ) ↔
l examples

evaluate matrix elements in Slater determinantal basis and in
many-e–  |NJLSMJ〉 or |NLMLSMS 〉 basis

1. electrons vs. holes—a shortcut:
(holes are a convenience in spectra of isolated atoms and
molecules, but they are an essential part of the
interpretive picture for solids)

2. Hund’s 3rd rule

3. Zeeman effect:  Landé g-factor formula via W-E Theorem
(done previously by projection theorem)

4. Matrix elements of HZeeman in Slater determinantal basis
set.  No difference between electron and hole as far as
Zeeman effect is concerned.
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1.  relationship between configurations with N e– vs. N “holes”

for p5 is it necessary to consider all 5 e–?

is the sign flip just a coincidence?  NO!

TRICK:  Hole is exactly equivalent to e– (for identical LMLSMS or JLSMJ)
except that the sign of its charge is reversed.

* no effect on e2/rij because 2 interacting particles have charge of the
same sign (either both e– or both hole), so e2/rij is always a
repulsive interaction.  [What happens for f13p?  Certainly different
from fp!]

* reverse sign for HSO because HSO is a relativistic electrostatic
interaction between e– and nucleus (+ charge).  Replacing e– by h+

and leaving the sign on the nucleus the same reverses the sign of
HSO!
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etc.

pretend that holes are e–, Slater determinants describe spin-orbitals occupied by holes.

* all Fk, Gk, ζnl remain positive (repulsions)

* all e2/rij energy level patterns are unaffected

* all ζ(N,L,S) reverse sign

Look at Tinkham 6-2, page 187 figure.

ζnd vs. ζ(N,L,S) for lowest L-S term of (3d)N configuration

  ∝ Zeff
3  –  periodicity, isoelectronic series, aufbau too

sign change, too rapid evolution with Z

INSIGHT — regularization of trends
EXTRAPOLATION
ASSIGNMENT
LABOR SAVING!

Shielding systematics: Z   ∅ Z + 1
Zeff ∅ Zeff + 1 – 0.5

      :
shielding

Burns’ Rules.  G. Burns, J. C. P. 41, 1561 (1964).
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2.  Hund’s Third Rule

Consider only MAX-S, MAX-L  L-S term, which Hund’s 1st and 2nd rules identify as
the lowest lying within the (nl)N configuration

This L-S term will always be a single Slater determinant for the ML = LMAX, MS = SMAX
component

      L M L S  M SMAX L MAX MAX S MAX,  ,  ,= = = ( ) …l lα α-1

(as many α spins as possible)

diagonal element of HSO

LMAX? if all spins are α, maximize ML by putting 1e– into each
ml starting at ml= l and working downward.

all spins α
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Summary for lowest energy L - S term:

L ,S  for less than 1 / 2 full, =  0 for 1 / 2 full, < 0  for more than 1 / 2 full
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Hund’s third rule:  ONLY FOR LOWEST ENERGY L-S term, lowest J component is

Assignments: sign of ζ(NLS)
# of J components
extreme J values (recognize via interval rule)
magnitude of ζnl

# of MJ components
Zeeman tuning rates

3.  Zeeman effect in many-e– atoms

        H L SZeeman
z z= − µ( ) +( )0 2h Bz

1.399613 MHz/Gauss
Bohr magneton

(Used γ previously)

W–E Theorem trick to simplify HZeeman:
consider only matrix elements diagonal in J [There are also

nonzero matrix elements of HZeeman off-diagonal in J.]

remember that HZeeman is awkward in JMJLS〉 basis set

      

Our special case  is useful as long as
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(This fails at high Bz when ζ(nLS) is small.)
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[This trick is equivalent to, but
not as elegant as, the projection
Theorem.]
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Landé g-value

* gJ is Zeeman tuning coefficient
* equally spaced MJ components
* excellent diagnostic for different L,S of same J

S

L
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J = 3 J = 2
parallel antiparallel

* gJ decreases at constant J when S is replaced by L.
* gJ decreases at  constant L and S as J decreases from L+S to |L–S|.

How to determine J:

* apply B-field and count MJ components
(constant splittings in upper and in lower L-S term)

* measure gJ (Quantum Beats)

* polarization dependent Zeeman splitting pattern:  ∆MJ = 0 for z
polarized, ∆MJ = ±1 for x or y polarized, ∆MJ = +1 or –1 for circularly
polarized
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Matrix Elements of HZeeman in Slater determinantal basis set?
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What about a single hole state?  Does Zeeman effect reverse sign?

no sign change for Zeeman for e– vs. h+.  WHY?

α-spins
7e–

β-spins
6e–

Hole vs. e– for Zeeman effect.
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