Read CTDL, pp. 1156-1178

LAST TIME: $\quad \mathbf{H}^{\text {so }}=\sum_{i} a\left(r_{i}\right) \boldsymbol{\ell}_{i} \cdot \mathbf{s}_{i} \quad \rightarrow \zeta(N, L, S) \mathbf{L} \cdot \mathbf{S} \quad$ (one ζ for each L-S term)

$$
\rightarrow \sum_{i} \zeta_{n \ell} \ell_{i} \cdot \mathbf{s}_{i} \quad \text { (one } \zeta \text { for entire configuration) }
$$

Landé interval rule (assignment!)
$\zeta(N, L, S) \leftrightarrow \zeta_{n \ell} \quad$ examples
evaluate matrix elements in Slater determinantal basis and in many-e ${ }^{-}\left|\mathrm{NJLSM}_{\mathrm{J}}\right\rangle$ or $\left|\mathrm{NLM}_{\mathrm{L}} \mathrm{SM}_{\mathrm{S}}\right\rangle$ basis
[off - diagonal $(\Delta \mathrm{J}=0)$ intraconfigurational $\mathbf{H}^{\text {SO }}$ matrix elements:
e.g. $\left\langle{ }^{1} I_{6}\right| \mathbf{H}^{\text {SO }}\left|{ }^{3} H_{6}\right\rangle=$? See notes [page 35-9]!

TODAY: 1. electrons vs. holes-a shortcut: $e^{2} / r_{i j}$ vs. $\mathbf{H}^{\text {so }}$ (holes are a convenience in spectra of isolated atoms and molecules, but they are an essential part of the interpretive picture for solids)
2. Hund's 3rd rule
3. Zeeman effect: Landé g-factor formula via W-E Theorem (done previously by projection theorem)
4. Matrix elements of $\mathbf{H}^{\text {Zeeman }}$ in Slater determinantal basis set. No difference between electron and hole as far as Zeeman effect is concerned.

NEXT TIME: e^{-}in solids
(CTDL, pages 1156-1168)

1. relationship between configurations with Ne^{-}vs. N "holes"

subshell	$(n \ell)^{N}$			
$1 / 2$ full subshell	s	p	d	f
\# e $^{-}$	1	3	5	7

for p^{5} is it necessary to consider all $5 \mathrm{e}^{-}$?
e.g. $\quad\|1 \alpha 1 \beta 0 \alpha 0 \beta-1 \alpha\|=\left|\mathrm{np}^{5}{ }^{2} \mathrm{P} \quad \mathrm{M}_{\mathrm{L}}=1, \mathrm{M}_{\mathrm{S}}=1 / 2\right\rangle$
$(\pm 1 \beta$ is the unoccupied spin - orbital. It is the "hole")
$\mathbf{H}^{\mathrm{SO}}\left|\mathrm{np}^{5}{ }^{2} \mathrm{P} \quad \mathrm{M}_{\mathrm{L}}=1, \mathrm{M}_{\mathrm{S}}=1 / 2\right\rangle=\zeta_{\mathrm{np}} \sum_{\mathrm{i}} \ell_{\mathrm{iz}-\mathrm{iz}}\|\mid \alpha 1 \beta 0 \alpha 0 \beta-1 \alpha\|$

$$
=\hbar^{2} \zeta_{\mathrm{np}}\left[\left(\frac{1}{2}-\frac{1}{2}\right)+(0-0)-\frac{1}{2}\right]\left\|5 \mathrm{e}^{-}\right\|
$$

so expectation value of $\left.\mathbf{H}^{\mathrm{so}}: \quad /\left\|5 \mathrm{e}^{-}\right\|\right\rangle=-\frac{1}{2} \zeta_{\mathrm{np}} \hbar^{2}$
but for single e^{-}(with

$$
\mathbf{H}^{\mathrm{so}}\left|\mathrm{np}^{1}{ }^{2} \mathrm{P} \quad \mathrm{M}_{\mathrm{L}}=1, \mathrm{M}_{\mathrm{S}}=1 / 2\right\rangle=\zeta_{\mathrm{np}} \ell_{\mathrm{z}^{-\mathrm{z}}}\|1 \alpha\|
$$ the same $\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}}$ as the five e^{-})

$$
\left\langle\left\|1 \mathrm{e}^{-}\right\|\right\rangle=+\frac{1}{2} \zeta_{\mathrm{np}} \hbar^{2}
$$

is the sign flip just a coincidence? NO!

TRICK: Hole is exactly equivalent to e ${ }^{-}$(for identical $\mathrm{LM}_{\mathrm{L}} \mathrm{SM}_{\mathrm{S}}$ or $\mathrm{JLSM}_{\mathrm{J}}$) except that the sign of its charge is reversed.

* no effect on $\mathrm{e}^{2} / \mathrm{r}_{\mathrm{ij}}$ because 2 interacting particles have charge of the same sign (either both e^{-}or both hole), so $\mathrm{e}^{2} / \mathrm{r}_{\mathrm{ij}}$ is always a repulsive interaction. [What happens for $\mathrm{f}^{13} \mathrm{p}$? Certainly different from fp!]
* reverse sign for $\mathbf{H}^{\text {SO }}$ because $\mathbf{H}^{\text {SO }}$ is a relativistic electrostatic interaction between e^{-}and nucleus (+ charge). Replacing e^{-}by h^{+} and leaving the sign on the nucleus the same reverses the sign of \mathbf{H}^{SO} !

$$
\begin{aligned}
p^{1} \leftrightarrow p^{5} & d^{1} \leftrightarrow d^{9} \quad \text { etc. } \\
p^{2} \leftrightarrow p^{4} & d^{2} \leftrightarrow d^{8} \\
& d^{3} \leftrightarrow d^{7} \\
& d^{4} \leftrightarrow d^{6}
\end{aligned}
$$

pretend that holes are e^{-}, Slater determinants describe spin-orbitals occupied by holes.

* all $\mathrm{F}_{\mathrm{k}}, \mathrm{G}_{\mathrm{k}}, \zeta_{\mathrm{n} \ell}$ remain positive (repulsions)
* all $\mathrm{e}^{2} / \mathrm{r}_{\mathrm{ij}}$ energy level patterns are unaffected
* all $\zeta(\mathrm{N}, \mathrm{L}, \mathrm{S})$ reverse sign

Look at Tinkham 6-2, page 187 figure.

INSIGHT - regularization of trends
EXTRAPOLATION
ASSIGNMENT
LABOR SAVING!

Shielding systematics: $\quad \mathrm{Z} \varnothing \mathrm{Z}+1$
$Z_{\text {eff }} \varnothing Z_{\text {eff }}+1-0.5$ shielding

Burns' Rules. G. Burns, J. C. P. 41, 1561 (1964).

Spin-orbit parameters in $3 d^{x}$ transition elements. The splitting parameters $z(L S)$ are averaged over the various splittings. The data used are for the $3 d^{x} 4 s^{2}$ configurations of the neutral atoms. (Adapted from Charlotte E. Moore, "Atomic Energy Levels," Natl. Bur. Standards, Circ.467, vols. I and II, 1949 and 1952. A very similar figure appears in Condon and Shortley.)

2. Hund's Third Rule

Consider only MAX-S, MAX-L L-S term, which Hund's 1st and 2nd rules identify as the lowest lying within the ($n \ell)^{\mathrm{N}}$ configuration

This L-S term will always be a single Slater determinant for the $\mathrm{M}_{\mathrm{L}}=\mathrm{L}_{\text {MAX }}, \mathrm{M}_{\mathrm{S}}=\mathrm{S}_{\text {MAX }}$ component

$$
\left|\mathrm{L}_{\mathrm{MAX}}, \mathrm{M}_{\mathrm{L}}=\mathrm{L}_{\mathrm{MAX}}, \mathrm{~S}_{\mathrm{MAX}}, \mathrm{M}_{\mathrm{S}}=\mathrm{S}_{\mathrm{MAX}}\right\rangle=\|\ell \alpha(\ell-1) \alpha \ldots .\|
$$

diagonal element of \mathbf{H}^{SO}

$$
\begin{aligned}
& \zeta\left((n \ell)^{N}, \mathrm{~L}_{\text {MAX }}, \mathrm{S}_{\text {MAX }}\right) \mathrm{L}_{\text {MAX }} \mathrm{S}_{\text {MAX }}=\zeta_{n \ell} \sum_{i} m_{\ell_{i}} m_{s_{i}} \\
& \zeta\left((n \ell)^{N}, \mathrm{~L}_{\text {MAX }}, \mathrm{S}_{\text {MAX }}\right)=\zeta_{n \ell} \frac{\Sigma m_{\ell_{i}} m_{s_{i}}}{\mathrm{~L}_{\text {MAX }} \mathrm{S}_{\mathrm{MAX}}}
\end{aligned}
$$

$\mathrm{S}_{\text {max }}$? \quad shell less than $1 / 2$ full, $N<2 \ell+1$, all spins are α

$$
\therefore \mathrm{S}=\mathrm{N} / 2
$$

$\mathrm{L}_{\mathrm{MAX}}$? if all spins are α, maximize M_{L} by putting $1 \mathrm{e}^{-}$into each m_{ℓ} starting at $\mathrm{m}_{\ell}=\ell$ and working downward.

Shell $1 / 2$ full $\quad N=2 \ell+1$, all spins $\alpha, \sum_{i} m_{\ell_{i}}=0$
$S=N / 2, L=0$
lowest L-S term is ${ }^{2 \mathrm{~S}+1} L_{J}={ }^{N+1} S_{N / 2}$
(single J for all $\mathrm{L}=0$ terms) - $\underline{\text { no fine structure }}$

Shell more than $1 / 2$ full

$$
\begin{array}{ll}
\mathrm{S}_{\mathrm{MAX}} ? & 2 \ell+1 \alpha \text { spins } \\
& N-(2 \ell+1) \beta \text { spins } \\
& M_{S}=\frac{1}{2}[(2 \ell+1)-[N-(2 \ell+1)]]=2 \ell+1-N / 2 \\
& \mathrm{~S}_{\mathrm{MAX}}=2 \ell+1-N / 2
\end{array}
$$

$$
\mathrm{L}_{\mathrm{MAX}} ? \quad \text { for the } 2 \ell+1 \alpha \text { spins } \sum m_{\ell_{i}}=0
$$

for the $N-(2 \ell+1) \beta$ spins,

$$
\sum \mathrm{m}_{\ell_{\mathrm{i}}}=\ell+(\ell-1)+\ldots=M_{L}=\mathrm{L}_{\mathrm{MAX}}
$$

$$
\zeta\left(n \ell^{N} L_{M A X}, S_{M A X}\right)=\frac{\zeta_{n \ell}\left[\frac{1}{2}\left(\sum_{(\alpha)} m_{\ell_{i}}\right)-\frac{1}{2}\left(\sum_{(\beta)}^{m_{\ell_{i}}}\right)\right]^{\beta / \alpha \text { spins }}}{\mathrm{L}_{\mathrm{MAX}} \mathrm{~S}_{\mathrm{MAX}}}
$$

$$
\begin{aligned}
& =\frac{\zeta_{n \ell}(-1 / 2) L_{\mathrm{MAX}}}{L_{\mathrm{MAX}}[(2 \ell+1)-N / 2]}=\frac{-\zeta_{n \ell}}{2(2 \ell+1)-N} \\
& =-\frac{\zeta_{n \ell}}{2 S_{\mathrm{MAX}}}
\end{aligned}
$$

Summary for lowest energy L-S term:
** $\quad \zeta\left(\mathrm{n} \ell^{\mathrm{N}}, \mathrm{L}_{\mathrm{MAX}}, \mathrm{S}_{\mathrm{MAX}}\right)>0$ for less than $1 / 2$ full, $=0$ for $1 / 2$ full, <0 for more than $1 / 2$ full
** $\quad \zeta\left(\mathrm{n} \ell^{\mathrm{N}}, \mathrm{L}_{\mathrm{MAX}}, \mathrm{S}_{\text {MAX }}\right)= \pm \frac{\zeta_{\text {n } \ell}}{\left\{\begin{array}{l}\# \text { of } \mathrm{e}^{-} \\ \# \text { of } \mathrm{h}^{+}\end{array}\right\}}$

Hund's third rule: ONLY FOR LOWEST ENERGY L-S term, lowest J component is

```
\(J=|L-S|\) for \(N<2 \ell+1\) "regular"
\(\mathrm{J}=\mathrm{S} \quad \mathrm{N}=2 \ell+1\) no fine structure
\(\mathrm{J}=\mathrm{L}+\mathrm{S} \quad \mathrm{N}>2 \ell+1\) "inverted"
Assignments: \(\quad\) sign of \(\zeta(\mathrm{NLS})\)
    \# of J components
    extreme J values (recognize via interval rule)
    magnitude of \(\zeta_{\mathrm{n} \ell}\)
    \# of \(\mathrm{M}_{\mathrm{J}}\) components
    Zeeman tuning rates
```

3. Zeeman effect in many-e ${ }^{-}$atoms

remember that $\mathbf{H}^{\text {Zeeman }}$ is awkward in $\left|\mathrm{JM}_{\mathrm{J}} \mathrm{LS}\right\rangle$ basis set
W-E Theorem trick to simplify $\mathbf{H}^{\text {Zeeman }}$:
consider only matrix elements diagonal in J [There are also
nonzero matrix elements of $\mathrm{H}^{\text {Zeeman }}$ off-diagonal in J.]
$\left[\mathbf{H}^{\text {So }}\right.$ and $e^{2} / r_{i j}$ are strictly diagonal in J. Since $\mathbf{H}^{\text {Zeeman }}$ has sum of 2 vectors with respect to J, W - E Theorem says it can have $\Delta J=0, \pm 1$ matrix elements. When we evaluated matrix elements of \mathbf{L}_{z} and \mathbf{S}_{z} in $\left|\mathrm{JM}_{\mathrm{J}} \mathrm{LS}\right\rangle$ the hard way, we saw that there were nonzero $\Delta J= \pm 1$ matrix elements.

$$
\begin{aligned}
& \text { Our special case } \Delta J=0 \text { is useful as long as } \\
& \qquad\left\langle J^{\prime}\right| \mathbf{H}_{\propto \mathrm{B}_{\mathrm{z}}}^{\mathrm{Zeeman}}|J\rangle \ll\left|E_{J^{\prime}}^{(0)}-E_{J}^{(0)}\right|
\end{aligned}
$$

(This fails at high B_{z} when $\zeta(\mathrm{nLS})$ is small.)
for $\Delta J=0$ matrix elements, replace both \mathbf{L}_{z} and \mathbf{S}_{z} by \mathbf{J}_{z} $\left\langle J M^{\prime} L S\right| \mathbf{L}|J M L S\rangle=\langle J L S||\mathbf{L}||J L S\rangle\left\langle J M^{\prime} L S\right| \mathbf{J}|J M L S\rangle$
$\left\langle J M^{\prime} L S\right| \mathbf{S}|J M L S\rangle=\langle J L S||\mathbf{S} \| J L S\rangle\left\langle J M^{\prime} L S\right| \mathbf{J}|J M L S\rangle$
but $\mathbf{J}=\mathbf{L}+\mathbf{S}$. Add the 2 equations
$\langle | \mathbf{J}\rangle=\underbrace{(\langle\mid \mathbf{L} \|\rangle+\langle\mid \mathbf{S} \|\rangle)}_{(1-\alpha)=1 \quad(\alpha)}\langle | \mathbf{J}|\rangle \begin{aligned} & \text { [This trick is equivalent to, but } \\ & \text { not as elegant as, the projection } \\ & \text { Theorem.] }\end{aligned}$

$$
\mathbf{H}^{\text {Zeeman }}=\frac{-\mu_{0}}{\hbar}[\underbrace{(1-\alpha) \mathbf{J}_{z}}_{\substack{L_{z} \\ \text { part }}}+\underbrace{2 \alpha \mathbf{J}_{z}}_{\substack{2 S_{z} \\ \text { part }}}] B_{z}=\frac{-\mu_{0}}{\hbar} B_{z}(1+\alpha) \mathbf{J}_{z} \text { ! }
$$

Trick to evaluate α :
$\mathbf{L}^{2}=(\mathbf{J}-\mathbf{S})^{2}=\mathbf{J}^{2}+\mathbf{S}^{2}-2 \mathbf{J} \cdot \mathbf{S}$
diagonal $\left|\mathrm{JM}_{\mathrm{J}} \mathrm{LS}\right\rangle$ matrix element of both sides

$$
\left.\begin{array}{rl}
\hbar^{2} \mathrm{~L}(\mathrm{~L}+1)=\hbar^{2} \mathbf{J}(\mathrm{~J}+1)+\hbar^{2} \mathrm{~S}(\mathrm{~S}+1)-2\langle\mathrm{JMLS}| \mathbf{J} \cdot \mathbf{S}|\mathrm{JMLS}\rangle * * \\
\Downarrow \\
\text { completeness: } \mathbf{J} \text { has } \Delta \mathrm{J}=0 \\
\text { selection rule, } \mathbf{L} \text { has } \Delta \mathrm{L}=0, \\
\mathbf{S} \text { has } \Delta \mathrm{S}=0, \mathbf{J} \cdot \mathbf{S} \text { is scalar with } \\
\text { respect to } \mathbf{J}, \Delta \mathrm{M}=0
\end{array}\right\} \begin{aligned}
\langle J M L S| \mathbf{J} \cdot \mathbf{S}|J M L S\rangle & =\sum_{J^{\prime} M^{\prime} L^{\prime} S^{\prime}}\langle J M L S| \mathbf{J}\left|J^{\prime} M^{\prime} L^{\prime} S^{\prime}\right\rangle\left\langle J^{\prime} M^{\prime} L^{\prime} S^{\prime}\right| \mathbf{S}|J M L S\rangle \\
& =\langle J M L S| \mathbf{J}|J M L S\rangle\langle J M L S| \mathbf{S}|J M L S\rangle \\
& =\alpha\langle J M L S| \mathbf{J}^{2}|J M L S\rangle=\alpha J(J+1) \hbar^{2}
\end{aligned}
$$

Plug this into the $* *$ equation above and rearrange:

$$
\alpha=\frac{\mathrm{J}(\mathrm{~J}+1)+\mathrm{S}(\mathrm{~S}+1)-\mathrm{L}(\mathrm{~L}+1)}{2 \mathrm{~J}(\mathrm{~J}+1)}
$$

from from

$$
\begin{aligned}
\left\langle\mathbf{H}^{\text {Leman }}\right\rangle & =-\mu_{0} B_{z} M_{J}[\overbrace{(1-\alpha)}^{\mathbf{L}_{z}}+\overbrace{2 \alpha}^{2 s_{z}}] \\
& =-\mu_{0} B_{z} M_{J} \underbrace{[1+\alpha]}_{g_{J}}
\end{aligned}
$$

Landé g-value
$g_{J} \equiv 1+\alpha=1+\frac{J(J+1)+S(S+1)-L(L+1)}{2 J(J+1)}$

* g_{J} is Zeeman tuning coefficient $=-\frac{1}{\mu_{0}} \frac{d E}{d B_{z}} \frac{1}{M_{J}}=g_{J}, ~$
* excellent diagnostic for different L,S of same J

g_{J} is large when $\overrightarrow{\mathrm{L}}$ and \vec{S} are parallel (ie. since $\mathrm{J}=\mathrm{L}+\mathrm{S}$,
parallel $\overrightarrow{\mathrm{L}}, \overrightarrow{\mathrm{S}}$ at constant J means smallest possible L in order to have largest possible S)
g_{J} small when $\overrightarrow{\mathrm{L}}, \overrightarrow{\mathrm{S}}$ are antiparallel

$$
\begin{array}{ccccc}
\text { e.g. } & J=3: & L=0, S=3 & L=1, S=2 & L=2, S=1 \\
g_{J} & 2.000 & 1.667 & 1.333 & 1.000 \\
L=3, S=1: & \begin{array}{c}
J=4 \\
\text { parallel })
\end{array} & \mathrm{J}=3 & \mathrm{~J}=2 & \\
& & \text { (antiparallel) } &
\end{array}
$$

$\begin{array}{lll}1.250 & 1.1667 & 0.667\end{array}$

* g_{J} decreases at constant J when S is replaced by L.
* g_{J} decreases at constant L and S as J decreases from $L+S$ to $|L-S|$.

How to determine J:

* apply B-field and count M_{J} components (constant splittings in upper and in lower L-S term)
* measure g_{J} (Quantum Beats)
* polarization dependent Zeeman splitting pattern: $\Delta \mathrm{M}_{\mathrm{J}}=0$ for z polarized, $\Delta \mathrm{M}_{\mathrm{J}}= \pm 1$ for x or y polarized, $\Delta \mathrm{M}_{\mathrm{J}}=+1$ or -1 for circularly polarized

Compare direct evaluation of Zeeman matrix element to g_{J} determined independently.

Matrix Elements of $\mathbf{H}^{\text {Zeeman }}$ in Slater determinantal basis set?

$$
\begin{aligned}
& \text { e.g. } \quad\left|\mathrm{f}^{2}{ }^{3} H_{6} \quad M_{J}=6\right\rangle=\|3 \alpha 2 \alpha\| \\
& \mathbf{H}^{\text {Zeeman }}=-\left(\mu_{0} / \hbar\right) B_{z} \sum_{i}\left(\ell_{i z}+2 \mathbf{s}_{i z}\right)
\end{aligned}
$$

$$
\left\langle\|3 \alpha 2 \alpha\|\left\|^{\text {Zeeman }}\right\| \mid 3 \alpha 2 \alpha \|\right\rangle=-\left(\mu_{0} B_{z}\right)[(3+1)+(2+1)]
$$

$$
=-7 \mu_{0} B_{z}
$$

Now compare with g_{J} equation:

$$
\left\langle{ }^{3} \mathrm{H}_{6} \quad 6\right| \mathbf{H}^{\text {Zeeman }}\left|{ }^{3} \mathrm{H}_{6} \quad 6\right\rangle=-\left(\mu_{0} \mathrm{~B}_{\mathrm{z}}\right) g_{\mathrm{J}} \mathrm{M}_{\mathrm{J}}
$$

$$
g_{J}=1+\frac{6 \cdot 7+1 \cdot 2-5 \cdot 6}{2 \cdot 6 \cdot 7}=1+\frac{1}{6}=\frac{7}{6}
$$

$$
\left\rangle=-\left(\mu_{0} B_{z}\right) \frac{7}{6} 6=-7 \mu_{0} B_{0} \quad\right. \text { agrees! }
$$

Hole vs. e^{-}for Zeeman effect.

What about a single hole state? Does Zeeman effect reverse sign?

$$
\begin{aligned}
& \left|f^{132}{ }^{2} \mathrm{~F}_{7 / 2} 7 / 2\right\rangle=\|3 \alpha \ldots-3 \alpha 3 \beta \ldots-2 \beta\| \\
& \left|\mathrm{f}^{12} \mathrm{~F}_{7 / 2} 7 / 2\right\rangle=\|3 \alpha\| \\
& \mathbf{E}^{\text {Zeeman }}\left(\mathrm{f}^{13}{ }^{2} \mathrm{~F}_{7 / 2} 7 / 2\right)=-\left(\mu_{0} \mathrm{~B}_{\mathrm{z}}\right)[(0+7)+(3-6)] \\
& =-4 \mu_{0} \mathrm{~B}_{\mathrm{z}} \quad{ }^{7 \mathrm{e}^{-}} \quad 6 \mathrm{e}^{-} \\
& \mathrm{E}^{\text {Zeeman }}\left(\mathrm{f}^{1}{ }^{2} \mathrm{~F}_{7 / 2} 7 / 2\right)=-\left(\mu_{0} \mathrm{~B}_{\mathrm{z}}\right)[3+1]=-4 \mu_{0} \mathrm{~B}_{\mathrm{z}} \\
& \text { same as } \mathrm{f}^{13}
\end{aligned}
$$

no sign change for Zeeman for e^{-}vs. h^{+}. WHY?

