Infinite 1-D Lattice

CTDL, pages 1156-1168

LAST TIME:

hole $\left(\mathrm{h}^{+}\right)$vs. e^{-}configurations: $\quad \quad \ell^{N} \leftrightarrow \ell^{2(2 \ell+1)-N}$ for $\mathrm{N}>2 \ell+1$
$\mathrm{e}^{2} / r_{i j}$ unchanged

$$
\zeta(N L S) \rightarrow-\zeta(N L S) \quad\left[\zeta_{n \ell} \text { unchanged }\right]
$$

Hund's 3rd Rule (Lowest L-S term of ℓ^{N} only)

$$
\begin{array}{lll}
\mathrm{N}<2 \ell+1 & \mathrm{E}_{\mathrm{MIN}} \text { for } J=|L-S| & \text { regular } \\
\mathrm{N}=2 \ell+1 & (2 \ell+1)+1 \\
& S_{J=\frac{2 \ell+1}{2}} & S \text { state: no fine structure } \\
\mathrm{N}>2 \ell+1 & \mathrm{E}_{\mathrm{MIN}} \text { for } J=L+S & \text { inverted }
\end{array}
$$

Zeeman Effect
Wigner-Eckart Theorem used to define g_{J}

$$
\begin{aligned}
\mathrm{E}^{\text {Zeeman }} & =-\mu_{0} M_{J} g_{J} B_{z} \\
g_{J} & =1+\frac{J(J+1)+S(S+1)-L(L+1)}{2 J(J+1)}
\end{aligned}
$$

Start with H_{2}^{+}, a lattice with only 2 equivalent sites.
qualitative picture: atomic energy levels
tunneling between identical localized states
slow behind big barrier (small splitting)
fast behind small barrier (large splitting)
levels \rightarrow bands, of width related to tunneling rate

for exact degeneracy, can choose any linear combination
Localized basis set
$\psi_{\text {localized }}=\psi_{\text {left }}^{(0)}$ or $\psi_{\text {right }}^{(0)}$
Delocalized basis set
$\psi_{\text {delocalized }}=2^{-1 / 2}\left[\psi_{\text {left }}^{(0)} \pm \psi_{\text {right }}^{(0)}\right]$

5.73 Lecture \#37

If initially in localized state, tunneling rate depends on

* height (relative to $\mathrm{E}_{n}^{(0)}$) of barrier
* width of barrier
* size of overlap between exponential tails of $\psi_{\text {left }}^{(0)}$ and $\psi_{\text {right }}^{(0)}$
clear that tunneling rate (i.e. splitting) increases
* as $\mathrm{n} \uparrow$ at constant R (internuclear separation)
* as $R \downarrow$ at constant n

double degeneracy at $\mathrm{R} \rightarrow \infty$
Δ is tunneling splitting—gets larger as $R \downarrow$

N ATOMS ALONG A STRAIGHT LINE

each electronic state of isolated atom becomes band of states for ∞ lattice.
Energy width of each band increases as the principal q.n. increases because atomic states require more room: $\langle\mathrm{r}\rangle_{\mathrm{n}} \propto \mathrm{a}_{0} \mathrm{n}^{2}$. Tunneling gets faster.
Greater sensitivity to world outside one atom.

Simplified Model for ∞ 1-Dimensional Lattice: basis for qualitative insights and early time predictions.

1. Each ion, called q, has one bound state, $\left|v_{q}\right\rangle$ at $\mathrm{E}_{0}=\left\langle\mathrm{v}_{\mathrm{q}}\right| \mathbf{H}\left|\mathrm{v}_{\mathrm{q}}\right\rangle \quad$ [diagonal element of \mathbf{H}] (actually 2 spin-orbitals)
2. permit orbitals only on adjacent ions to interact [simplifying assumption] like Hückel theory.
3. symmetry: all ions are equally spaced, $\mathrm{x}_{\mathrm{q}+1}-\mathrm{x}_{\mathrm{q}}=\ell$, and all adjacent-orbital interaction matrix elements are identical

$$
\left\langle v_{q}\right| \mathbf{H}\left|v_{q+1}\right\rangle \equiv-\mathrm{A} \quad \text { [off-diagonal elements of } \mathrm{H} \text {] }
$$

($\mathfrak{I A}$ I would increase as $\ell \rightarrow$ Opreasons for - A sign choice later.]

$$
\text { so } \mathbf{H}=\left(\begin{array}{ccccc}
\mathrm{E}_{0} & -\mathrm{A} & & & \mathbf{0} \\
-\mathrm{A} & \ddots & \ddots & \mathbf{O} & \\
& \ddots & \mathrm{E}_{0} & -\mathrm{A} & \\
\mathbf{0} & & -\mathrm{A} & \ddots & \ddots \\
& & & \ddots &
\end{array}\right)
$$

since this is infinite, need a trick to diagonalize it.
general variational function

$$
|\varphi\rangle=\sum_{q=-\infty}^{\infty} c_{q}\left|V_{q}\right\rangle \quad \begin{aligned}
& \text { superposition of AO's at } \\
& \text { each site }
\end{aligned}
$$

get requirements on c_{q} by plugging this into Schrödinger equation

$$
\begin{aligned}
& \mathbf{H}|\varphi\rangle=E|\varphi\rangle \\
& \text { left multiply by }\left\langle v_{\mathrm{q}}\right|
\end{aligned}
$$

picks out q-th row of \mathbf{H}
$\xrightarrow{\stackrel{v_{q} \mid}{\left.v_{q}|\mathbf{H}| \varphi\right\rangle}}=E\left\langle v_{q} \mid \varphi\right\rangle$

$$
\begin{aligned}
& E\left[v_{q} \mid \varphi\right]=E\left[c_{q}\right] \\
& \therefore 0=c_{q}\left[E_{0}-E\right]-c_{q-1} A-c_{q+1} A
\end{aligned}
$$

comes from the assumed simple form of model

TRICK: probability of finding e^{-}on each lattice site should be the same for all sites (complex amplitudes might differ but probabilities will be constant)

$$
\text { let } c_{q}=e^{i k q \ell} \quad\left|c_{q}\right|^{2}=1 \quad \text { for all } q
$$

This choice of c_{q} is a good guess that is consistent with expectation of equal probabilities on each lattice site.
ℓ is distance between adjacent atoms
q is integer
$\mathrm{q} \ell$ is the coordinate of the q -th site: looks like $\mathrm{e}^{\mathrm{ikx}}$ plane wave k is of dimension ℓ^{-1}

$$
\text { problem reduces to finding allowed values of } k \text {. }
$$

periodicity of lattice provides the important result that if k is replaced by k^{\prime}, where $\mathrm{k}^{\prime}=\mathrm{k}+\frac{2 \pi}{\ell}$, the wavefunction does not change (translational symmetry)

$$
c_{q}^{\prime}=e^{i k^{\prime} q \ell}=e^{\left(i k q \ell+i \frac{2 \pi}{\ell} q \ell\right)}=e^{i k q \ell} \underbrace{e^{i 2 \pi q}}_{=1}=c_{q}
$$

Since all distinguishable $|\varphi\rangle$ may be generated by choosing k in the interval $-\frac{\pi}{\ell} \leq \mathrm{k}<\frac{\pi}{\ell}$, restrict k to this range: called "First Brillouin zone".

Return to question about what happens when k is not in 1st Brillouin Zone next time [get another part of the band structure using qualitative perturbation theory rather than a matrix diagonalization calculation].
Plug $\quad c_{q}=e^{i k q \ell}$ into Schrödinger Equation

$$
\begin{aligned}
& 0=c_{q}\left(E_{0}-E\right)-A\left(c_{q+1}+c_{q-1}\right) \\
& 0=e^{i k q \ell}\left(E_{0}-E\right)-A\left(e^{i k(q+1) \ell}+e^{i k(q-1) \ell}\right)
\end{aligned}
$$

divide by $e^{i k q \ell}$ and rearrange

This is the condition on E, k that must be satisfied for all eigenfunctions of the Schrödinger equation

$$
E=E_{0}-2 A \cos k \ell
$$

E varies continuously over finite interval $E_{0} \pm 2 A$

The choice $\left\langle v_{q}\right| \mathbf{H}\left|v_{q+1}\right\rangle=-A$ leads to minimum E at $k=0$.

Are these all of the allowed energy levels that arise from a single orbital at each lattice site? Apparently not - see next time. Only half of the states. [One orbital per atom \rightarrow two spin-orbitals per atom. Antisymmetrization gives another separate band.]

Could repeat calculation for a higher energy state at each site. Would get a broader band centered at higher energy.
closer look at spatial form of $\varphi_{k}(x) \equiv\left\langle x \mid \varphi_{k}\right\rangle$

$$
\varphi_{k}(x)=\left\langle x \mid \varphi_{k}\right\rangle=\sum_{q=-\infty}^{+\infty} e^{i k q \ell} \underbrace{\left\langle x \mid v_{q}\right\rangle}_{v_{q}(x)}
$$

goal is to replace infinite sum by single term:

begin by requiring that $\varphi_{\mathrm{k}}(x)=\sum_{\mathrm{q}=-\infty}^{\infty} \mathrm{e}^{\mathrm{ikgl}} v_{\mathrm{q}}(\mathrm{x})$
Translational symmetry imposes a relationship between $v_{q}(x)$ and v_{0}
each $v_{\mathrm{q}}(x)$ is localized at site q.

$$
\begin{aligned}
v_{q}(x) & =v_{0}(x-q \ell) \\
\varphi_{k}(x) & =\sum_{q=-\infty}^{\infty} e^{i k q \ell} v_{0}(x-q \ell) \\
\varphi_{k}(x+\ell) & =\sum_{q=-\infty}^{\infty} e^{i k q \ell} \underbrace{v_{0}(x+\ell-q \ell)}_{=v_{0}(x-(q-1) \ell)} \\
& =e^{i k \ell} \sum e^{i k(q-1) \ell} v_{0}(x-(q-1) \ell)
\end{aligned}
$$

shift x by
$-q \ell$ to get
from site q
to site 0
re-index sum (replace $q-1$ by q)

$$
\begin{aligned}
& \varphi_{k}(x+\ell)=e^{i k \ell} \varphi_{k}(x) \\
& \text { translation } \\
& \text { by } \ell \text { ! }
\end{aligned}
$$

This form of ϕ_{k} has all of the symmetry properties we will need. This form is sufficient to satisfy the symmetry requirements (boundary conditions).
This means, instead of writing $\varphi_{k}(x)$ as sum over atom - localized $v_{q}(x)$'s, it is possible to write $\varphi_{k}(x)$ as product of 2 factors

$$
\varphi_{k}(x)=e^{i k x} u_{k}(x)
$$

1st factor conveys translational symmetry of a plane wave with wavevector k, 2 nd factor builds in translational symmetry of lattice with spacing ℓ. This is a more general expression that incorporates all of the properties of the original definition of $\varphi_{k}(x)$ as a sum over localized orbitals.

$$
\begin{aligned}
& u_{k}(x+\ell)=u_{k}(x) \\
& \varphi_{k}(x+\ell)=e^{i k x} e^{i k \ell} u_{k}(x+\ell)=e^{i k \ell}\left[e^{i k x} u_{k}(x)\right] \\
&=e^{i k \ell} \varphi_{k}(x)
\end{aligned}
$$

as required.

Note also that $\mathfrak{J} \varphi_{k}(x+n \ell) \mathfrak{J}^{2}=\mathfrak{I} \varphi_{k}(x) \mathfrak{J}^{2}$ implies that, as required, e^{-}has equal probability of being found on each site.

