Infinite 1-D Lattice II

LAST TIME:
$\mathbf{H}_{2}^{+} \quad$ localization \leftrightarrow tunneling: overlap $\left\{\begin{array}{l}\mathrm{R} \text { vs. } a_{0} n^{2} \\ \text { distance bel ow top } \\ \text { of barrier }\end{array}\right.$
TIGHT-BINDING (Kronig-Penney) Model (see Baym pp. 116-122)
1-D ∞ lattice: 1 state per ion

$$
\begin{gathered}
\text { tunneling only between nearest neighbors } \\
\infty \mathbf{H} \text { matrix } \\
\mathbf{H}=\left(\begin{array}{cccc}
\mathrm{E}_{0} & -\mathrm{A} & \ddots & 0 \\
-\mathrm{A} & \mathrm{E}_{0} & \ddots & 0 \\
0 & \ddots & \ddots & 0 \\
0 & 0 & \ddots & \ddots
\end{array}\right) \\
\left\langle v_{\mathrm{q}}\right| \mathbf{H}|\varphi\rangle=\mathrm{E}\left\langle v_{\mathrm{q}} \mid \varphi\right\rangle \\
|\varphi\rangle=\sum_{\mathrm{q}=-\infty}^{\infty} \mathrm{c}_{\mathrm{q}}\left|v_{\mathrm{q}}\right\rangle \\
0=\mathrm{c}_{\mathrm{q}}\left(\mathrm{E}_{0}-\mathrm{E}\right)-\mathrm{A}\left(\mathrm{c}_{\mathrm{q}-1}+\mathrm{c}_{\mathrm{q}+1}\right) \quad \text { Variational wavefunction. Minimize } \mathrm{E} \text {. }
\end{gathered}
$$

Usually solve for $\left\{\mathrm{c}_{\mathrm{q}}\right\}$ by setting determinant of coefficients $=0$
and solving for E . Can't do this because determinant is ∞.

TRICK: expect equal probability of finding e^{-}on each lattice site by analogy to plane wave $\mathrm{e}^{\mathrm{ikx}}$, where probability density is uniform at all sites along x , try

Notice that this is similar to free particle $\mathrm{e}^{\mathrm{ikx}}$, which seems rather strange because particle is never really free in "tight-binding" model.

$$
\left|c_{q}\right|^{2}=1
$$

plug trial form for c_{q} into $0=\mathrm{c}_{\mathrm{q}}\left(\mathrm{E}_{0}-\mathrm{E}\right)-\mathrm{A}\left(\mathrm{c}_{\mathrm{q}-1}+\mathrm{c}_{\mathrm{q}+1}\right)$

$$
0=\mathrm{e}^{\mathrm{ik} \ell \ell}\left(\mathrm{E}_{0}-\mathrm{E}\right)-\mathrm{Ae}^{\mathrm{ik} q \ell}\left(\mathrm{e}^{-\mathrm{i} k \ell}+\mathrm{e}^{\mathrm{+ik} \ell}\right)
$$

divide through by $e^{i k q \ell}$
$0=\left(E_{0}-E\right)-A 2 \cos k \ell$

$E(k)=E_{0}-2 A \cos k \ell$

E varies continuously over an interval 4A, where A is the adjacent site interaction strength or the "tunneling integral"

What happens when we look at k outside $-\pi / \ell \leq k<\pi / \ell$
"1st Brillouin Zone"
$c_{k}=e^{i k q \ell}$
$k^{\prime}=k+\frac{2 \pi}{\ell} \quad \begin{gathered}\text { (one additional } \\ \text { wavelength per } \\ \text { lattice }\end{gathered}$
$c_{k^{\prime}}=e^{i\left(k+\frac{2 \pi}{\ell}\right) q \ell}=e^{i k q \ell} e^{i 2 \pi q}=e^{i k q \ell}$
wavefunction is unchanged!
So if k goes outside 1st Brillouin Zone, get same ψ, so get same E nothing new!
No point in allowing k to vary more widely than $-\pi / \ell \leq k \leq \pi / \ell$.

Unanswered Questions:

1. How many distinct orbitals are there in a band?

N -atom periodic array. Periodic Boundary conditions:
$\frac{2 \pi}{\ell N} \leq|k| \leq \frac{2 \pi}{\ell}$ in N steps
infinite lattice: $\frac{-\pi}{\ell}<\mathrm{k}<\frac{\pi}{\ell}$ contains all the states generated from one state per atom.
2. What happens at $\mathrm{E}>\mathrm{E}_{0}+2 \mathrm{~A}$?
gap - no states allowed
next higher state of each atom?
free particle if $\mathrm{E}>$ work function
3. Orbitals not states! Two spin-orbitals per orbital.

Antisymmetrization.
Lowest band: all spins paired. No G term.
$\mathrm{e}^{-}-\mathrm{e}^{-}$repulsion raises overall E above that of single state of each atom
Work function is smaller than single atom IP
4. How many e^{-}does each atom contribute to ψ ?
alkali: $1 \mathrm{e}^{-} \varnothing$ half full band
alkaline earth: $2 \mathrm{e}^{-} \varnothing$ full band

5.73 Lecture \#38

Now take a closer look at $\varphi_{k}(x)$

$$
\begin{aligned}
& \varphi(x)=\left\langle x \mid \varphi_{k}\right\rangle=\sum_{q=-\infty}^{+\infty} e^{i k q \ell} \underbrace{\left\langle x \mid v_{q}\right\rangle}_{v_{q}(x)} \\
& \nu_{q}(x)=\nu_{0}(x-q \ell) \quad \begin{array}{l}
\text { shift } \mathrm{x} \text { by }-\mathrm{q} \ell \text { to get } \\
\text { from site } q \text { to site } 0
\end{array} \\
& \varphi_{k}(x)=\sum_{q} e^{i k q \ell} \nu_{0}(x-q \ell)
\end{aligned}
$$

translate entire φ by ℓ

$$
\begin{aligned}
\varphi_{k}(x+\ell) & =\sum_{q} e^{i k q \ell} \underbrace{v_{0}(x-q \ell+\ell)}_{v_{0}(x-(q-1) \ell)} \\
& =e^{i k \ell} \sum_{q} e^{i k(q-1) \ell} \nu_{0}(x-(q-1) \ell)
\end{aligned}
$$

re-index summation

$$
\varphi_{k}(x+\ell)=e^{i k \ell} \sum_{q} e^{i k q \ell} v_{0}(x-q \ell)=\underbrace{e^{i k \ell}}_{\substack{\downarrow \\ \text { translation of } \\ \text { plane wave by } \ell}} \varphi_{k}(x)
$$

implies that it is possible to write $\varphi_{\mathrm{k}}(x)$ in more general form

$$
\begin{gathered}
\varphi_{k}(x)=e^{i k x} u_{k}(x) \quad \text { Bloch wave function } \\
\text { where } u_{k}(x+\ell)=u_{k}(x) \quad \text { perodicity of } \ell
\end{gathered}
$$

$e^{i k x}$ conveys translational symmetry of plane wave with wavevector k $u_{k}(x)$ conveys translational symmetry of Iattice with spacing ℓ

5.73 Lecture \#38

Localized time dependent state : wavepacket
We are gong to build intuitive insight by comparison to free particle.
Recall free particle:

$$
\Psi(\mathrm{x}, \mathrm{t})=(2 \pi)^{-1 / 2} \int \mathrm{dk} \underbrace{\mathrm{~g}(\mathrm{k})}_{\begin{array}{c}
\text { envelope } \\
\text { of } \mathrm{k} \\
\text { centered } \\
\text { at } \mathrm{k}_{0}
\end{array}} \mathrm{e}^{\mathrm{i}[\mathrm{kx}-\underbrace{\mathrm{E}(\mathrm{k}) \mathrm{t} / \hbar]}_{\omega t}]}
$$

Group velocity: motion of stationary phase point (stationary with respect to k near k_{0})

$$
\begin{aligned}
0 & =\left.\frac{\mathrm{d}}{\mathrm{dk}}[\mathrm{kx}-\mathrm{Et} / \hbar]\right|_{\mathrm{k}=\mathrm{k}_{0}} \\
\mathrm{x}_{\text {center }}(\mathrm{t}) & =\left.\frac{\mathrm{dE}}{\mathrm{dk}}\right|_{\mathrm{k}_{0}} \mathrm{t} / \hbar \\
\mathrm{v}_{\text {center }} & =\left.\frac{\mathrm{dE}}{\mathrm{dk}}\right|_{\mathrm{k}_{0}} \frac{1}{\hbar} \\
\mathrm{E} & =\frac{\hbar^{2} \mathrm{k}^{2}}{2 \mathrm{~m}} \\
\left.\frac{\mathrm{dE}}{\mathrm{dk}}\right|_{\mathrm{k}_{0}} & =\frac{\hbar^{2} \mathrm{k}_{0}}{\mathrm{~m}} \\
\mathrm{v}_{\text {center }} & =\mathrm{v}_{\mathrm{G}}=\frac{1}{\hbar}\left[\left.\frac{\mathrm{dE}}{\mathrm{dk}}\right|_{\mathrm{k}_{0}}\right]=\frac{\hbar \mathrm{k}_{0}}{\frac{\mathrm{dt}}{\mathrm{~m}}}
\end{aligned}
$$

5.73 Lecture \#38

Up to here we have been analyzing the free particle.
for 1-D lattice

$$
|\Psi(\mathrm{t})\rangle=(2 \pi)^{-1 / 2} \int \mathrm{dk} \underbrace{\mathrm{~g}(\mathrm{k})}_{\substack{\text { peak } \\ \text { at } \mathrm{k}_{0}}} \mathrm{e}^{-\mathrm{iE}(\mathrm{k}) \mathrm{t} / \hbar}\left|\varphi_{\mathrm{k}}\right\rangle
$$

instead of asking for location of stationary phase point, ask for time dependent overlap of $\Psi(\mathrm{t})$ with specific lattice site $\left|v_{q}\right\rangle$.
$\left\langle v_{\mathrm{q}} \mid \Psi(\mathrm{t})\right\rangle=(2 \pi)^{-1 / 2} \int \mathrm{dkg}(\mathrm{k}) \mathrm{e}^{\mathrm{i}[\mathrm{kq} \ell-\mathrm{E}(\mathrm{k}) \mathrm{t} / \hbar]}$
because $\left|\varphi_{\mathrm{k}}\right\rangle=\sum_{\mathrm{q}=-\infty}^{\infty} \mathrm{e}^{\mathrm{ikq}}\left|\nu_{\mathrm{q}}\right\rangle$

$$
\left(\begin{array}{l}
\text { same thing as } \left.\phi_{\mathrm{k}}(\mathrm{x})=\sum_{\mathrm{q}=-\infty}^{\infty} \mathrm{e}^{\mathrm{ikq} \ell}\left\langle\mathrm{x} \mid \mathrm{v}_{\mathrm{q}}\right\rangle\right) \quad \begin{array}{l}
\text { We can use either } \\
\text { state vector or } \\
\text { wavefunction picture }
\end{array}
\end{array}\right.
$$

and $\left\langle v_{\mathrm{q}}\right|$ picks out only the $\mathrm{e}^{\mathrm{ikq} \ell}$ term
because $\left\langle v_{\mathrm{p}} \mid \nu_{\mathrm{q}}\right\rangle=\delta_{\mathrm{pq}}$
recall that $\mathrm{x}=\mathrm{q} \mathbf{l}$, so we can think of $\left\langle\mathrm{v}_{\mathrm{q}} \mid \Psi(\mathrm{t})\right\rangle$ as function of x, t
Overlap of $\Psi(\mathrm{t})$ with particluar lattice site $\left|v_{\mathrm{q}}\right\rangle . \Psi(\mathrm{t})$ moves and sequentially overlaps succesive lattice sites.

$$
\left\langle v_{\mathrm{q}} \mid \Psi(t)\right\rangle=\psi_{\chi}^{\begin{array}{c}
\begin{array}{l}
\text { meaningful only for } \\
\text { regions of } x \text { near } q \ell
\end{array} \\
\chi \\
\hline
\end{array}}
$$

ask for stationary phase factor (near $x=0, \pm \ell, \pm 2 \ell, \ldots$) with respect to k

$$
0=\frac{\mathrm{d}}{\mathrm{dk}}[\mathrm{kx}-\mathrm{E}(\mathrm{k}) \mathrm{t} / \hbar]
$$

$$
\mathrm{x}_{\mathrm{c}}(\mathrm{t})=\left.\frac{\mathrm{dE}}{\mathrm{dk}}\right|_{\mathrm{k}_{0}} \mathrm{t} / \hbar
$$

wavepacket is created centered at $\mathrm{k}=\mathrm{k}_{0}$

Up to here, everything is identical for free particle and motion in a periodic lattice.

Now use $\mathrm{E} \times \mathrm{k}$ relationship derived for periodic (tight binding) lattice.
quite different from plane wave result

$$
\mathrm{V}_{\mathrm{G}}=\frac{\hbar \mathrm{k}_{0}}{\mathrm{~m}}
$$

Note that $\mathrm{v}_{\mathrm{G}}=0$ when k_{0} is at bottom $\left(\mathrm{k}_{0}=\right.$ 0) or top $\left(\mathrm{k}_{0}= \pm \pi / \ell\right)$ of band.

Building of intuition:

* $\mathrm{v}_{\mathrm{G}} \propto \mathrm{A} \quad[$ as $|\mathrm{A}|$ increases it becomes easier to take a step]
* $\mathrm{v}_{\mathrm{G}} \propto \ell($ but $\mathrm{A} \downarrow$ as $\ell \uparrow)$
(because tunneling rate decreases as ℓ increases) but if A is kept constant as ℓ increases, each step is longer so velocity will be higher
* $\mathrm{v}_{\mathrm{G}}=0$ when $\mathrm{k}_{0}=0$ and when $\mathrm{k}_{0}= \pm \pi / \ell$

$$
\begin{array}{ll}
\text { bottom of band } & \text { top of band } \\
\text { Not a surprise } & \text { Big surprise. } \\
\text { because expect } & \text { Use concept of } \\
\mathrm{k}=0 \varnothing \mathrm{v}=0 & \text { "effective mass" } \\
\text { if it is too close to edges of band } & \text { to rationalize. }
\end{array}
$$

e^{-}cannot move if it is too close to edges of band

"Effective Mass:" free

vs. lattice

$$
\mathrm{v}_{\mathrm{G}}=\frac{\hbar \mathrm{k}_{0}}{\mathrm{~m}}
$$

compare the terms and identify reciprocal of the coefficient of $\hbar \mathrm{k}_{0}$:

$$
\mathrm{m}_{\text {eff }}=\frac{\hbar^{2}}{2 \mathrm{~A} \ell^{2}} \text { at small } \mathrm{k}_{0} \ell
$$

* large interaction strength makes $\mathrm{m}_{\text {eff }}$
small
* large ℓ makes $\mathrm{m}_{\text {eff }}$ small (large jumps)

Next: How do we show that $\mathrm{m}_{\text {eff }}$ increases to ∞ at band edges $(\mathrm{k}= \pm \pi / \ell)$?

When k_{0} is near $\pm \pi / \ell$

$$
\begin{aligned}
\mathrm{k}_{0} & = \pm\left(\frac{\pi}{\ell}-\varepsilon\right) \\
\sin \mathrm{k}_{0} \ell & =\sin \pm\left(\frac{\pi}{\ell}-\varepsilon\right) \ell \approx \pm \varepsilon \ell \\
\mathrm{v}_{\mathrm{G}} & =\hbar \mathrm{k}_{0}\left[\frac{2 \mathrm{~A} \ell}{\hbar^{2} \mathrm{k}_{0}} \sin \mathrm{k}_{0} \ell\right] \approx \pm \hbar \mathrm{k}_{0}\left[\frac{2 \mathrm{~A} \ell}{\hbar^{2} \mathrm{k}_{0}} \varepsilon \ell\right] \\
\mathrm{m}_{\text {eff }} & =\frac{\hbar^{2} \mathrm{k}_{0}}{2 \mathrm{~A} \ell^{2} \varepsilon} \longrightarrow \infty \text { as } \varepsilon \rightarrow 0
\end{aligned}
$$

Full band: no e^{-}transport.
1/2 Full band: $\mathrm{m}_{\text {eff }}=\frac{\sqrt{2}}{2} \frac{\hbar^{2}}{\mathrm{~A} \ell^{2}}$ (slightly heavier than at bottom of band)

Alternative approach to $\mathrm{m}_{\text {eff }}$:

$$
\begin{aligned}
& \mathrm{E}=\mathrm{p}^{2} / 2 \mathrm{~m} \quad \text { for free particle } \\
& \left(\frac{\mathrm{d}^{2} \mathrm{E}}{\mathrm{dp}^{2}}\right)^{-1}=\mathrm{m} \quad \text { Use this to define } \mathrm{m}_{\text {eff }} \\
& \mathrm{E}(\mathrm{k})=\mathrm{E}_{0}-2 \mathrm{~A} \operatorname{cosk} \ell \\
& \mathrm{E}(\mathrm{p})=\mathrm{E}_{0}-2 \mathrm{~A} \cos (\mathrm{p} \ell / \hbar) \\
& \frac{\mathrm{d}^{2} \mathrm{E}}{\mathrm{dp}^{2}}=\left(2 \mathrm{~A} \ell^{2} / \hbar^{2}\right) \cos \mathrm{k} \ell \quad \cos \mathrm{k} \ell=1-\frac{1}{2}(\mathrm{k} \ell)^{2}+\ldots
\end{aligned}
$$

$$
\text { at small } \mathrm{k} \ell \quad \mathrm{~m}_{\mathrm{eff}}=\frac{\hbar^{2}}{2 \mathrm{~A} \ell^{2}}
$$

