5.73 Lecture 39
 One Dimensional Lattice: Weak Coupling Limit

See Baym "Lectures on Quantum Mechanics" pages 237-241.
Each atom in lattice represented as a 1-D $\mathrm{V}(\mathrm{x})$ that could bind an unspecified number of electronic states.

Lattice could consist of two or more different types of atoms.

Periodic structure: repeated for each "unit cell", of length ℓ.
Consider a finite lattice (N atoms) but impose periodic (head-to-tail) boundary condition.

$$
\mathrm{L}=\mathrm{N} \ell
$$

This is an infinitely repeated finite interval: Fourier Series

$$
V(x)=\sum_{n=-\infty}^{\infty} e^{i K n x} V_{n}
$$

$$
\mathrm{K}=\frac{2 \pi}{\ell} \text { "reciprocal lattice vector" }
$$

5.73 Lecture 39

V_{n} is the (possibly complex) Fourier coefficient of the part of $\mathrm{V}(\mathrm{x})$ that looks like a free particle state with wave-vector Kn (momentum $\hbar \mathrm{Kn}$). Note that Kn is larger than the largest k (shortest λ) free particle state that can be supported by a lattice of spacing ℓ.

$$
\begin{array}{r}
\mathrm{Kn}=\mathrm{n} \frac{2 \pi}{\ell} \quad, \quad \text { first Brillouin Zone for } \mathrm{k} \\
-\frac{\pi}{\ell} \leq \mathrm{k} \leq \frac{\pi}{\ell}
\end{array}
$$

We will see that the lattice is able to exchange momentum in quanta of $\hbar \mathrm{nK}$ with the free particle. In $3-D, \vec{K}$ is a vector.

To solve for the effect of $\mathrm{V}(\mathrm{x})$ on a free particle, we use perturbation theory.

1. Define basis set.

$$
\begin{aligned}
\mathbf{H}^{(0)} & =\frac{\mathbf{p}^{2}}{2 \mathrm{~m}}=-\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{\mathrm{~d}^{2}}{\mathrm{dx}} \\
\mathrm{~V}^{(0)} & =\mathrm{constant} \\
\psi_{\mathrm{k}}^{(0)} & =\mathrm{L}^{-1 / 2} \mathrm{e}^{\mathrm{ikx}} \\
\mathrm{E}_{\mathrm{k}}^{(0)} & =\frac{\hbar^{2} \mathrm{k}^{2}}{2 \mathrm{~m}}
\end{aligned}
$$

2. $\quad \mathbf{H}^{(1)}=\sum_{n=-\infty}^{\infty} e^{i K n} V_{n}$

Matrix elements: $H_{k^{\prime} k}^{(1)}=\int_{0}^{L} d x\left[L^{-1 / 2} e^{-i k^{\prime} x}\right]\left[\sum_{n} e^{i K n x} V_{n}\right]\left[L^{-1 / 2} e^{i k x}\right]$ $H_{k^{\prime} k}^{(1)}=\frac{1}{L} \int_{0}^{L} d x \sum_{n} e^{i x\left(k+K n-k^{\prime}\right)} V_{n}$
integral $=0$ if $\mathrm{k}+\mathrm{Kn}-\mathrm{k}^{\prime} \neq 0$
$\therefore \mathrm{k}^{\prime}=\mathrm{k}+\mathrm{Kn}$
$\mathrm{H}_{\mathrm{k}^{\prime} \mathrm{k}}^{(1)}=\frac{1}{\mathrm{~L}} \mathrm{~L} \sum_{\mathrm{n}} \mathrm{V}_{\mathrm{n}} \delta_{\mathrm{k}^{\prime}, \mathrm{k}+\mathrm{Kn}}=\sum_{\mathrm{n}} \mathrm{V}_{\mathrm{n}} \delta_{\mathrm{k}^{\prime}, \mathrm{k}+\mathrm{Kn}}$

Must be careful about $\mathrm{H}_{\mathrm{kk}^{\prime}}^{(1)}$ (relative to $\mathrm{H}_{\mathrm{k}^{\prime} \mathrm{k}}^{(1)}$)

$$
\begin{aligned}
& \quad \mathrm{H}_{\mathrm{kk}}^{(1)}=\frac{1}{\mathrm{~L}} \int_{0}^{\mathrm{L}} \mathrm{dx} \sum_{\mathrm{n}} \mathrm{e}^{\mathrm{ix}\left(-\mathrm{k}+\mathrm{Kn}+\mathrm{k}^{\prime}\right)} \mathrm{V}_{\mathrm{n}}=\sum_{\mathrm{n}} \mathrm{~V}_{\mathrm{n}} \delta_{\mathrm{k}^{\prime}, \mathrm{k}-\mathrm{Kn}} \\
& \text { but Hermitian } \mathbf{H} \text { requires } \mathrm{H}_{\mathrm{kk}}(1)=\mathrm{H}_{\mathrm{k}^{\prime}{ }^{(1)}}^{(1)^{*}}
\end{aligned}
$$

$$
\therefore \sum_{\mathrm{n}} \mathrm{~V}_{\mathrm{n}} \delta_{\mathrm{k}^{\prime}, \mathrm{k}-\mathrm{Kn}}=\sum_{\mathrm{n}} \mathrm{~V}_{\mathrm{n}}^{*} \delta_{\mathrm{k}^{\prime}, \mathrm{k}+\mathrm{Kn}}
$$

$$
\text { true if } V_{n}=V_{-n}^{*}
$$

So now that we have the matrix elements of $\mathbf{H}^{(0)}$ and $\mathbf{H}^{(1)}$, the problem is essentially solved. All that remains is to plug into perturbation theory and arrange the results.
3. Solve for $\psi_{k}=\psi_{k}^{(0)}+\psi_{k}^{(1)}$
$\psi_{k}^{(0)}=L^{-1 / 2} \mathrm{e}^{\mathrm{ikx}}$
$\psi_{\mathrm{k}}^{(1)}=\mathrm{L}^{-1 / 2} \sum_{\mathrm{n}}^{\prime} \frac{\mathrm{H}_{\mathrm{kk}}^{(1)} \mathrm{e}^{\mathrm{ik} \mathrm{k}^{\prime} \mathrm{x}}}{\mathrm{E}_{\mathrm{k}}^{(0)}-\mathrm{E}_{\mathrm{k}^{\prime}}^{(0)}}=\mathrm{L}^{-1 / 2} \sum_{\mathrm{n}}^{\prime} \frac{\mathrm{V}_{\mathrm{n}} \delta_{\mathrm{k}^{\prime}, \mathrm{k}-\mathrm{Kn}} \mathrm{e}^{\mathrm{i} \mathrm{k}^{\prime} \mathrm{x}}}{\mathrm{E}_{\mathrm{k}}^{(0)}-\mathrm{E}_{\mathrm{k}-\mathrm{Kn}}^{(0)}}\left(\Sigma^{\prime}\right.$ means $\left.\mathrm{k}^{\prime} \neq \mathrm{k}\right)$
$\psi_{\mathrm{k}}^{(1)}=\mathrm{L}^{-1 / 2} \sum_{\mathrm{n}}^{\prime} \frac{\mathrm{V}_{\mathrm{n}} \mathrm{e}^{\mathrm{i}(\mathrm{k}-\mathrm{Kn}) \mathrm{x}}}{\mathrm{E}_{\mathrm{k}}^{(0)}-\mathrm{E}_{\mathrm{k}-\mathrm{Kn}}^{(0)}}$
$\psi_{\mathrm{k}}^{(1)^{*}}=\mathrm{L}^{-1 / 2} \sum_{\mathrm{n}}^{\prime} \frac{\mathrm{V}_{\mathrm{n}}^{*} \mathrm{e}^{-\mathrm{i}(\mathrm{k}-\mathrm{Kn}) \mathrm{x}}}{\mathrm{E}_{\mathrm{k}}^{(0)}-\mathrm{E}_{\mathrm{k}-\mathrm{Kn}}^{(0)}}$
$\mathrm{V}_{\mathrm{n}}^{*}=\mathrm{V}_{-\mathrm{n}}$
$\psi_{\mathrm{k}}^{(1)^{*}}=\mathrm{L}^{-1 / 2} \sum_{\mathrm{n}}^{\prime} \frac{\mathrm{V}_{-\mathrm{n}} \mathrm{e}^{-\mathrm{i}(\mathrm{k}-\mathrm{Kn}) \mathrm{x}}}{\mathrm{E}_{\mathrm{k}}^{(0)}-\mathrm{E}_{\mathrm{k}-\mathrm{Kn}}^{(0)}}=\mathrm{L}^{-1 / 2} \sum_{-\mathrm{n}}^{\prime} \frac{\mathrm{V}_{\mathrm{n}} \mathrm{e}^{-\mathrm{i}(\mathrm{k}+\mathrm{Kn}) \mathrm{x}}}{\mathrm{E}_{\mathrm{k}}^{(0)}-\mathrm{E}_{\mathrm{k}+\mathrm{Kn}}^{(0)}}$

But n is just a dummy index, so replace -n by n .
4. Use ψ_{k} and ψ_{k}^{*} to compute $\mathrm{E}_{\mathrm{k}}=\mathrm{E}_{\mathrm{k}}^{(0)}+\mathrm{E}_{\mathrm{k}}^{(1)}+\mathrm{E}_{\mathrm{k}}^{(2)}$.

Rather than use the usual formula for $\mathrm{E}^{(2)}$, go back to the λ^{n} formulation of perturbation theory.

$$
\mathrm{E}_{\mathrm{k}}=\lambda^{0} \mathrm{E}_{\mathrm{k}}^{(0)}+\lambda^{1} \mathrm{E}_{\mathrm{k}}^{(1)}+\lambda^{2} \mathrm{E}_{\mathrm{k}}^{(2)}=\left\langle\psi_{\mathrm{k}}\right| \lambda^{0} \mathbf{H}^{(0)}+\lambda^{1} \mathbf{H}^{(1)}\left|\psi_{\mathrm{k}}\right\rangle
$$

Retain terms only through λ^{2}

$$
\begin{gathered}
\mathrm{E}_{\mathrm{k}}=\frac{1}{\mathrm{~L}} \int_{0}^{\mathrm{L}} \mathrm{dx}\left[\mathrm{e}^{-\mathrm{ikx}}+\lambda \sum_{\mathrm{n}}^{\prime} \frac{\mathrm{V}_{\mathrm{n}} \mathrm{e}^{-\mathrm{i}(\mathrm{k}+\mathrm{Kn}) \mathrm{x}}}{\mathrm{E}_{\mathrm{k}}^{(0)}-\mathrm{E}_{\mathrm{k}+\mathrm{Kn}}^{(0)}}\right]\left[-\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{\mathrm{~d}^{2}}{\mathrm{dx}}+\lambda \sum_{\mathrm{m}} \mathrm{~V}_{\mathrm{m}} \mathrm{e}^{\mathrm{iKmx}}\right] \\
\times\left[\mathrm{e}^{\mathrm{ikx}}+\lambda \sum_{\mathrm{n}^{\prime}}^{\prime} \frac{\mathrm{V}_{\mathrm{n}} \mathrm{e}^{\mathrm{i}\left(\mathrm{k}-\mathrm{Kn}^{\prime}\right) \mathrm{x}}}{\mathrm{E}_{\mathrm{k}}^{(0)}-\mathrm{E}_{\mathrm{k}-\mathrm{Kn}}(0)}\right] \\
\mathrm{E}_{\mathrm{k}}^{(0)}=\lambda^{0} \frac{1}{\mathrm{~L}}\left[-\frac{\mathbf{h}^{2}}{2 \mathrm{~m}}\left(-\mathrm{k}^{2}\right) \mathrm{L}\right]=\lambda^{0} \frac{\mathbf{h}^{2} \mathrm{k}^{2}}{2 \mathrm{~m}} \quad\left[\text { recall } \frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}} \mathrm{e}^{\mathrm{ikx}}=-\mathrm{k}^{2} \mathrm{e}^{\mathrm{ikx}}\right] \\
\mathrm{E}_{\mathrm{k}}^{(0)}=\lambda^{1} \frac{1}{\mathrm{~L}}\left[\int \mathrm{dx} \mathrm{e}^{-\mathrm{ikx}} \sum_{\mathrm{m}} \mathrm{e}^{\mathrm{iKmx}} \mathrm{~V}_{\mathrm{m}} \mathrm{e}^{\mathrm{ikx}}+2 \text { terms involving }\left(-\frac{\mathbf{h}^{2}}{2 \mathrm{~m}} \frac{\mathrm{~d}^{2}}{\mathrm{dx}^{2}}\right)\right]
\end{gathered}
$$

1 st term, only $\mathrm{m}=0$ term in sum gives nonzero integral.
2 nd terms, need n or $\mathrm{n}^{\prime}=0$ term from sum, but these are excluded by Σ^{\prime}.

$$
\mathrm{E}_{\mathrm{k}}^{(1)}=\lambda^{1} \frac{1}{\mathrm{~L}} \mathrm{LV}_{0}=\lambda^{1} \mathrm{~V}_{0}
$$

$$
\begin{aligned}
\mathrm{E}_{\mathrm{k}}^{(2)}= & \frac{1}{\mathrm{~L}} \lambda^{2}\left[\int \mathrm{dx} \mathrm{e}^{-\mathrm{ikx}} \sum_{\mathrm{m}=-\infty}^{\infty} \mathrm{V}_{\mathrm{m}} \mathrm{e}^{\mathrm{iKmx}} \sum_{\mathrm{n}^{\prime}=-\infty}^{\infty} \frac{\mathrm{V}_{\mathrm{n}^{\prime}} \mathrm{e}^{\mathrm{i}\left(\mathrm{k}-\mathrm{Kn}^{\prime}\right) \mathrm{x}}}{\mathrm{E}_{\mathrm{k}}^{(0)}-\mathrm{E}_{\mathrm{k}-\mathrm{Kn}^{\prime}}^{(0)}}\right. \\
& \left.+\int \mathrm{dx} \sum_{\mathrm{n} \neq 0}^{\prime} \frac{\mathrm{V}_{\mathrm{n}} \mathrm{e}^{-\mathrm{i}(\mathrm{k}+\mathrm{Kn}) \mathrm{x}}}{\mathrm{E}_{\mathrm{k}}^{(0)}-\mathrm{E}_{\mathrm{k}+\mathrm{Kn}}^{(0)}}\left(\sum_{\mathrm{m}} \mathrm{~V}_{\mathrm{m}} \mathrm{e}^{\mathrm{iKm}}\right) \mathrm{e}^{\mathrm{ikx}}\right]
\end{aligned}
$$

1st term $\quad 0=-\mathrm{k}+\mathrm{Km}+\mathrm{k}-\mathrm{Kn}^{\prime}$, requires $\mathrm{m}=\mathrm{n}^{\prime}$
2nd term $\quad 0=-\mathrm{k}-\mathrm{Kn}+\mathrm{Km}+\mathrm{k}$, requires $\mathrm{m}=\mathrm{n}$

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{k}}^{(2)}=\frac{1}{\mathrm{~L}} \lambda^{2}\left[\int \mathrm{dx} \sum_{\mathrm{m}}^{\prime} \frac{\mathrm{V}_{\mathrm{m}}^{2}}{\mathrm{E}_{\mathrm{k}}^{(0)}-\mathrm{E}_{\mathrm{k}-\mathrm{Km}}^{(0)}}+\int \mathrm{dx} \sum_{\mathrm{m}}^{\prime} \frac{\mathrm{V}_{\mathrm{m}}^{2}}{\mathrm{E}_{\mathrm{k}}^{(0)}-\mathrm{E}_{\mathrm{k}+\mathrm{Km}}^{(0)}}\right] \\
& \mathrm{E}_{\mathrm{k}}^{(2)}=2 \lambda^{2} \sum_{\mathrm{m}=-\infty}^{\prime} \frac{\mathrm{V}_{\mathrm{n}}^{2}}{\mathrm{E}_{\mathrm{k}}^{(0)}-\mathrm{E}_{\mathrm{k}+\mathrm{Kn}}^{(0)}}
\end{aligned}
$$

Combine terms for n and -n and $\operatorname{sum} \sum_{\mathrm{n}=1}^{\infty}$

$$
\mathrm{E}_{\mathrm{k}}^{(0)}-\mathrm{E}_{\mathrm{k} \pm \mathrm{Kn}}^{(0)}=\frac{\hbar^{2}}{2 \mathrm{~m}}\left[\mathrm{k}^{2}-(\mathrm{k} \pm \mathrm{Kn})^{2}\right]=\frac{\hbar^{2} \mathrm{Kn}}{2 \mathrm{~m}}[\mathrm{Kn} \pm 2 \mathrm{k}]
$$

$$
\frac{1}{\mathrm{E}_{\mathrm{k}}^{(0)}-\mathrm{E}_{\mathrm{k}+K \mathrm{Kn}}^{(0)}}+\frac{1}{\mathrm{E}_{\mathrm{k}}^{(0)}-\mathrm{E}_{\mathrm{k}-K \mathrm{n}}}=\frac{4 \mathrm{~m}}{\hbar^{2}} \frac{1}{\mathrm{~K}^{2} \mathrm{n}^{2}-4 \mathrm{k}^{2}}
$$

$$
\mathrm{E}_{\mathrm{k}}^{(2)}=\frac{8 \mathrm{~m}}{\hbar^{2}} \sum_{\mathrm{n}=1}^{\infty} \frac{\mathrm{V}_{\mathrm{n}}^{2}}{\mathrm{~K}^{2} \mathrm{n}^{2}-4 \mathrm{k}^{2}}
$$

5.73 Lecture 39

But there are many zeroes in this denominator as n goes $0 \rightarrow \infty$.

Must use degenerate perturbation theory for each small denominator.
$\operatorname{Recall}\left(\begin{array}{cc}E_{k} & V \\ V & E_{k^{\prime}}\end{array}\right) \longrightarrow E_{ \pm}=\frac{E_{k}+E_{k^{\prime}}}{2} \pm\left[\left(\frac{E_{k}-E_{k^{\prime}}}{2}\right)^{2}+V^{2}\right]^{1 / 2}$

$$
\mathrm{E}_{\mathrm{k}}=\frac{\hbar^{2} \mathrm{k}^{2}}{2 \mathrm{~m}}+\mathrm{V}_{0}+\frac{8 \mathrm{~m}}{\hbar^{2}} \sum_{\mathrm{n}=1}^{\infty} \frac{\mathrm{V}_{\mathrm{n}}^{2}}{\mathrm{~K}^{2} \mathrm{n}^{2}-4 \mathrm{k}^{2}}
$$

$$
\text { zeroes at } \mathrm{k}= \pm \frac{\mathrm{Kn}}{2}= \pm \frac{2 \pi}{2 \mathrm{l}} \mathrm{n}= \pm \frac{\mathrm{n} \pi}{\mathrm{l}} \text { except } \mathrm{n}=0
$$

$$
\text { at } \mathrm{k}=0 \text {, there are no nearby zeroes }
$$

$$
\begin{array}{ll}
\left.\frac{\mathrm{dE}_{\mathrm{k}}}{\mathrm{dk}}\right|_{\mathrm{k}=0}=\frac{\hbar \mathrm{k}}{\mathrm{~m}} & \text { (minimum at } \mathrm{k}=0) \\
\left.\frac{\mathrm{d}^{2} \mathrm{E}_{\mathrm{k}}}{\mathrm{dk}^{2}}\right|_{\mathrm{k}=0}=\frac{\hbar}{\mathrm{m}} & \text { (positive curvature) }
\end{array}
$$

just like free particle!
At $k= \pm \frac{K}{2}$, there are zeroes in denominator, so there is a gap in energy of
$2\left|V_{1}\right|$ at $k= \pm \frac{K}{2}$
$2\left|\mathrm{~V}_{2}\right|$ at $\mathrm{k}= \pm \mathrm{K}$
$2\left|\mathrm{~V}_{\mathrm{n}}\right|$ at $\mathrm{k}= \pm \frac{\mathrm{nK}}{2}$

What does this look like?

$$
\mathrm{E}=\mathrm{V}_{0}+\left(\frac{\hbar^{2}}{2 \mathrm{~m}}\right) \mathrm{k}^{2}
$$

look at text Baym page 240.

But we want to shift each of the segments by integer times K to left or right so that they all fit within the $\frac{-\mathrm{K}}{2} \leq \mathrm{k} \leq \frac{\mathrm{K}}{2}$ "first Brillouin Zone".

k diagram. Curvature gives $\mathrm{m}_{\text {eff }}$

3 - D k - diagram - much more information. Tells where to find allowed transitions as function of 3-D \vec{k} vector in reciprocal lattice of lattice vector $\overrightarrow{\mathrm{K}}$.

Scattering of free particle off lattice. Conservation of momentum in the sense $\overrightarrow{\mathrm{k}}_{\text {final }}-\overrightarrow{\mathrm{k}}_{\text {initial }}=\overrightarrow{\mathrm{K}}$.

